Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 283

Synonyms:
   Anomalopus truncatus 
   Coloscincus truncatus 
   Lygosoma truncatum 
   Ophioscincus truncatus (Burrowing Snake Skink) 

Broader Terms:
   Anomalopus (Lesser Burrowing Skinks) 
   Coloscincus 
   Lygosoma (Writhing Skinks) 
   Ophioscincus (Lesser Snake Skinks) 
   short-limbed 

More Specific:
   Ophioscincus truncatus monswilsonensis 
   Ophioscincus truncatus truncatus 
 
 


External Resources:



1.  A SMOC2 variant inhibits BMP signaling by competitively binding to BMPR1B and causes growth plate defects.LinkIT
Long F, Shi H, Li P, Guo S, Ma Y, Wei S, Li Y, Gao F, Gao S, Wang M, Duan R, Wang X, Yang K, Sun W, Li X, Li J, Liu Q
Bone, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Effect of periosteal resection on longitudinal bone growth in a mouse model of achondroplasia.LinkIT
Kaneko S, Matsushita M, Mishima K, Takegami Y, Imagama S, Kitoh H
Bone reports, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  CRELD2 Is a Novel LRP1 Chaperone That Regulates Noncanonical WNT Signaling in Skeletal Development.LinkIT
Dennis EP, Edwards SM, Jackson RM, Hartley CL, Tsompani D, Capulli M, Teti A, Boot-Handford RP, Young DA, Piróg KA, Briggs MD
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research J Bone Miner Res CRELD2 Is a Novel LRP1 Chaperone That Regulates Noncanonical WNT Signaling in Skeletal Development. 1452-1469 10.1002/jbmr.4010 Cysteine-rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER)-resident chaperone highly activated under ER stress in conditions such as chondrodysplasias; however, its role in healthy skeletal development is unknown. We show for the first time that cartilage-specific deletion of Creld2 results in disrupted endochondral ossification and short limbed dwarfism, whereas deletion of Creld2 in bone results in osteopenia, with a low bone density and altered trabecular architecture. Our study provides the first evidence that CRELD2 promotes the differentiation and maturation of skeletal cells by modulating noncanonical WNT4 signaling regulated by p38 MAPK. Furthermore, we show that CRELD2 is a novel chaperone for the receptor low-density lipoprotein receptor-related protein 1 (LRP1), promoting its transport to the cell surface, and that LRP1 directly regulates WNT4 expression in chondrocytes through TGF-?1 signaling. Therefore, our data provide a novel link between an ER-resident chaperone and the essential WNT signaling pathways active during skeletal differentiation that could be applicable in other WNT-responsive tissues. © 2020 American Society for Bone and Mineral Research. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research. Dennis Ella P EP Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK. Edwards Sarah M SM Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK. Jackson Robert M RM Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK. Hartley Claire L CL Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK. Tsompani Dimitra D Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK. Capulli Mattia M https://orcid.org/0000-0003-0449-6720 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy. Teti Anna A Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy. Boot-Handford Raymond P RP Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK. Young David A DA Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK. Piróg Katarzyna A KA Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK. Briggs Michael D MD https://orcid.org/0000-0001-6283-1676 Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne, UK. eng 602300 FP7 Health 084353/Z/07 WT_ Wellcome Trust United Kingdom Journal Article 2020 04 09 United States J Bone Miner Res 8610640 0884-0431 IM CRELD2 SKELETAL DEVELOPMENT WNT SIGNALING 2020 01 10 2020 03 02 2020 03 10 2020 3 18 6 0 2020 3 18 6 0 2020 3 18 6 0 ppublish 32181934 10.1002/jbmr.4010 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Pharmacokinetics and safety after once and twice a day doses of meclizine hydrochloride administered to children with achondroplasia.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kitoh H, Matsushita M, Mishima K, Nagata T, Kamiya Y, Ueda K, Kuwatsuka Y, Morikawa H, Nakai Y, Ishiguro N<br><font color=gray><i>PloS one, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>NPR2 Variants Are Frequent among Children with Familiar Short Stature and Respond Well to Growth Hormone Therapy.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Zemkova D, Elblova L, Kucerova P, Toni L, Kolouskova S, Snajderova M, Sumnik Z, Lebl J, Pruhova S<br><font color=gray><i>The Journal of clinical endocrinology and metabolism, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Severe achondroplasia due to two de novo variants in the transmembrane domain of FGFR3 on the same allele: A case report.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Nagata T, Matsushita M, Mishima K, Kamiya Y, Kato K, Toyama M, Ogi T, Ishiguro N, Kitoh H<br><font color=gray><i>Molecular genetics & genomic medicine, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Oculo-skeletal dysplasia in five Labrador Retrievers.</ArticleTitle> <Pagination> <MedlinePgn>386-393</MedlinePgn> </Pagination> <ELocationID EIdType="doi" ValidYN="Y">10.1111/vop.12715</ELocationID> <Abstract> <AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To describe the clinical features and diagnostic findings of Labrador Retrievers with oculo-skeletal dysplasia (OSD).</AbstractText> <AbstractText Label="ANIMAL STUDIED" NlmCategory="METHODS">Five privately owned dogs.</AbstractText> <AbstractText Label="PROCEDURES" NlmCategory="METHODS">Medical records of dogs diagnosed with OSD from 2008 through 2018 were reviewed. Patients were excluded if lacking disease confirmation through genetic testing (Optigen RD/OSD). Information collected included signalment, physical and ophthalmic examination findings, results of ocular ultrasound and electroretinogram, and digital radiographs of forelimbs and pelvis.</AbstractText> <AbstractText Label="RESULTS" NlmCategory="RESULTS">All five dogs were Labrador Retrievers, confirmed to be homozygote for the OSD mutation. The main physical abnormalities were vision deficits (5 dogs), short-limbed dwarfism (5), carpal valgus (4), and color dilution alopecia (4). The main ophthalmic anomalies were cataracts (10 eyes), vitreous syneresis (10), retinal separation (6), persistent hyperplastic primary vitreous (2), lens coloboma (2), microphakia (2), and persistent tunica vasculosa lentis (1). Ocular ultrasound and electroretinogram confirmed the diagnoses of retinal separations and persistent hyperplastic primary vitreous. Radiographic changes included shortening of ulna and curved radius (5 dogs), elbow incongruity and osteoarthritis (4 dogs), hip dysplasia (3), and coxofemoral osteoarthritis (2). Available follow-up information (2 dogs) showed progression of cataract from incipient to mature in one dog, necessitating cataract surgery, and progression of cataract and lameness in another dog.</AbstractText> <AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The clinical findings of OSD are described in five Labrador Retrievers. DNA testing is critical to diagnose OSD and help eradicate this condition from the breed. Progression of cataracts and osteoarthritis in dogs with OSD warrants yearly monitoring.</AbstractText> <CopyrightInformation>© 2019 American College of Veterinary Ophthalmologists.</CopyrightInformation> </Abstract> <AuthorList CompleteYN="Y"> <Author ValidYN="Y"> <LastName>Sebbag</LastName> <ForeName>Lionel</ForeName> <Initials>L</Initials> <Identifier Source="ORCID">https://orcid.org/0000-0002-0103-0127</Identifier> <AffiliationInfo> <Affiliation>Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa.</Affiliation> </AffiliationInfo> </Author> <Author ValidYN="Y"> <LastName>Riggs</LastName> <ForeName>Alexandra</ForeName> <Initials>A</Initials> <AffiliationInfo> <Affiliation>Lloyd Veterinary Medical Center, Iowa State University, College of Veterinary Medicine, Ames, Iowa.</Affiliation> </AffiliationInfo> </Author> <Author ValidYN="Y"> <LastName>Carnevale</LastName> <ForeName>Joyce</ForeName> <Initials>J</Initials> <AffiliationInfo> <Affiliation>Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa.</Affiliation> </AffiliationInfo> </Author> </AuthorList> <Language>eng</Language> <PublicationTypeList> <PublicationType UI="D002363">Case Reports</PublicationType> </PublicationTypeList> <ArticleDate DateType="Electronic"> <Year>2019</Year> <Month>10</Month> <Day>09</Day> </ArticleDate> </Article> <MedlineJournalInfo> <Country>England</Country> <MedlineTA>Vet Ophthalmol</MedlineTA> <NlmUniqueID>100887377</NlmUniqueID> <ISSNLinking>1463-5216</ISSNLinking> </MedlineJournalInfo> <CitationSubset>IM</CitationSubset> <KeywordList Owner="NOTNLM"> <Keyword MajorTopicYN="N">cataract</Keyword> <Keyword MajorTopicYN="N">dog</Keyword> <Keyword MajorTopicYN="N">dwarfism</Keyword> <Keyword MajorTopicYN="N">oculoskeletal dysplasia</Keyword> <Keyword MajorTopicYN="N">retinal dysplasia</Keyword> <Keyword MajorTopicYN="N">retinal separation</Keyword> </KeywordList> </MedlineCitation> <PubmedData> <History> <PubMedPubDate PubStatus="received"> <Year>2018</Year> <Month>11</Month> <Day>16</Day> </PubMedPubDate> <PubMedPubDate PubStatus="revised"> <Year>2019</Year> <Month>08</Month> <Day>25</Day> </PubMedPubDate> <PubMedPubDate PubStatus="accepted"> <Year>2019</Year> <Month>09</Month> <Day>09</Day> </PubMedPubDate> <PubMedPubDate PubStatus="pubmed"> <Year>2019</Year> <Month>10</Month> <Day>9</Day> <Hour>6</Hour> <Minute>0</Minute> </PubMedPubDate> <PubMedPubDate PubStatus="medline"> <Year>2019</Year> <Month>10</Month> <Day>9</Day> <Hour>6</Hour> <Minute>0</Minute> </PubMedPubDate> <PubMedPubDate PubStatus="entrez"> <Year>2019</Year> <Month>10</Month> <Day>10</Day> <Hour>6</Hour> <Minute>0</Minute> </PubMedPubDate> </History> <PublicationStatus>ppublish</PublicationStatus> <ArticleIdList> <ArticleId IdType="pubmed">31595625</ArticleId> <ArticleId IdType="doi">10.1111/vop.12715</ArticleId> </ArticleIdList> <ReferenceList> <Title>REFERENCES Carrig CB, MacMillan A, Brundage S, et al. Retinal dysplasia associated with skeletal abnormalities in Labrador Retrievers. J Am Vet Med Assoc. 1977;170:49-57. Meyers VN, Jezyk PF, Aguirre GD, et al. Short-limbed dwarfism and ocular defects in the Samoyed dog. J Am Vet Med Assoc. 1983;183:975-979. Carrig CB, Sponenberg DP, Schmidt GM, et al. Inheritance of associated ocular and skeletal dysplasia in Labrador retrievers. J Am Vet Med Assoc. 1988;193:1269-1272. Carrig CB, Schmidt GM, Tvedten HW. Growth of the radius and ulna in labrador retriever dogs with ocular and skeletal dysplasia. Vet Radiol Ultrasound. 1990;31:165-168. Stavinohova R, Ricketts S, Hartley C, et al. Genetic investigation of oculoskeletal dysplasia in the northern Inuit dog. Annual Scientific Meeting of the European College of Veterinary Ophthalmologists. 2017;E1-E14. Goldstein O, Guyon R, Kukekova A, et al. COL9A2 and COL9A3 mutations in canine autosomal recessive oculoskeletal dysplasia. Mamm Genome. 2010;21:398-408. Williams CJ, Jimenez SA. Heritable diseases of cartilage caused by mutations in collagen genes. J Rheumatol Suppl. 1995;43:28-33. Thrall DE. Textbook of Veterinary Diagnostic Radiology, 7th edn. Philadelphia, PA: WB Saunders; 2017:1000. Okun E, Rubin LF, Collins EM. Retinal breaks in the senile dog eye. Arch Ophthalmol. 1961;66:702-707. Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89:1502-1512. Itoh Y, Maehara S, Yamasaki A, et al. Investigation of fellow eye of unilateral retinal detachment in Shih-Tzu. Vet Ophthalmol. 2010;13:289-293. Barnett KC, Cottrell BD. Ehlers-Danlos syndrome in a dog: ocular, cutaneous and articular abnormalities. J Small Anim Pract. 1987;28:941-946. Grahn BH, Storey E, Cullen CL. Diagnostic ophthalmology. Bilateral lenticular coloboma and cortical cataracts. Can Vet J. 2003;44:245-246. Bavbek T, Ogüt MS, Kazokoglu H. Congenital lens coloboma and associated pathologies. Doc Ophthalmol. 1993;83:313-322. Grahn BH, Storey ES, McMillan C. Inherited retinal dysplasia and persistent hyperplastic primary vitreous in Miniature Schnauzer dogs. Vet Ophthalmol. 2004;7:151-158. Rubin LF. Heredity of retinal dysplasia in Bedlington terriers. J Am Vet Med Assoc. 1968;152:260. Ashton N, Barnett KC, Sachs DD. Retinal dysplasia in the Sealyham terrier. J Pathol Bacteriol. 1968;96:269-272. Collins BK, Collier LL, Johnson GS, et al. Familial cataracts and concurrent ocular anomalies in chow chows. J Am Vet Med Assoc. 1992;200:1485-1491. Gelatt KN, McGill LD. Clinical characteristics of microphthalmia with colobomas of the Australian Shepherd Dog. J Am Vet Med Assoc. 1973;162:393-396. Du F, Acland GM, Ray J. Cloning and expression of type II collagen mRNA: evaluation as a candidate for canine oculo-skeletal dysplasia. Gene. 2000;255:307-316. Seery CM, Davison PF. Collagens of the bovine vitreous. Invest Ophthalmol Vis Sci. 1991;32:1540-1550. Du F, Acland GM, Ray J. A highly polymorphic PCR/RFLP marker in the canine type II collagen gene (COL2A1). Anim Genet. 1998;29:407-408. Smit JJ, Temwitchitr J, Brocks BA, et al. Evaluation of candidate genes as a cause of chondrodysplasia in Labrador retrievers. Vet J. 2011;187:269-271. Du F. Molecular and genetic studies of oculo-skeletal dysplasia (OSD) in dogs. Ph.D. thesis, Cornell university; 2001. Pellegrini B, Acland GM, Ray J. Cloning and characterization of opticin cDNA: evaluation as a candidate for canine oculo-skeletal dysplasia. Gene. 2002;282:121-131. 20301736 NBK2534 University of Washington, Seattle Seattle (WA) GeneReviews® 1993 1993 2020 Adam Margaret P MP Ardinger Holly H HH Pagon Roberta A RA Wallace Stephanie E SE Bean Lora JH LJH Stephens Karen K Amemiya Anne A Internet FLNB DisordersLinkIT
Sebbag L, Riggs A, Carnevale J, , Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, , Robertson S
Veterinary ophthalmology Vet Ophthalmol Oculo-skeletal dysplasia in five Labrador Retrievers. 386-393 10.1111/vop.12715 To describe the clinical features and diagnostic findings of Labrador Retrievers with oculo-skeletal dysplasia (OSD). Five privately owned dogs. Medical records of dogs diagnosed with OSD from 2008 through 2018 were reviewed. Patients were excluded if lacking disease confirmation through genetic testing (Optigen RD/OSD). Information collected included signalment, physical and ophthalmic examination findings, results of ocular ultrasound and electroretinogram, and digital radiographs of forelimbs and pelvis. All five dogs were Labrador Retrievers, confirmed to be homozygote for the OSD mutation. The main physical abnormalities were vision deficits (5 dogs), short-limbed dwarfism (5), carpal valgus (4), and color dilution alopecia (4). The main ophthalmic anomalies were cataracts (10 eyes), vitreous syneresis (10), retinal separation (6), persistent hyperplastic primary vitreous (2), lens coloboma (2), microphakia (2), and persistent tunica vasculosa lentis (1). Ocular ultrasound and electroretinogram confirmed the diagnoses of retinal separations and persistent hyperplastic primary vitreous. Radiographic changes included shortening of ulna and curved radius (5 dogs), elbow incongruity and osteoarthritis (4 dogs), hip dysplasia (3), and coxofemoral osteoarthritis (2). Available follow-up information (2 dogs) showed progression of cataract from incipient to mature in one dog, necessitating cataract surgery, and progression of cataract and lameness in another dog. The clinical findings of OSD are described in five Labrador Retrievers. DNA testing is critical to diagnose OSD and help eradicate this condition from the breed. Progression of cataracts and osteoarthritis in dogs with OSD warrants yearly monitoring. © 2019 American College of Veterinary Ophthalmologists. Sebbag Lionel L https://orcid.org/0000-0002-0103-0127 Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa. Riggs Alexandra A Lloyd Veterinary Medical Center, Iowa State University, College of Veterinary Medicine, Ames, Iowa. Carnevale Joyce J Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa. eng Case Reports 2019 10 09 England Vet Ophthalmol 100887377 1463-5216 IM cataract dog dwarfism oculoskeletal dysplasia retinal dysplasia retinal separation 2018 11 16 2019 08 25 2019 09 09 2019 10 9 6 0 2019 10 9 6 0 2019 10 10 6 0 ppublish 31595625 10.1111/vop.12715 REFERENCES, 2020</Year> <Month>Mar</Month> </PubDate> </JournalIssue> <Title>Veterinary ophthalmology Vet Ophthalmol Oculo-skeletal dysplasia in five Labrador Retrievers. 386-393 10.1111/vop.12715 To describe the clinical features and diagnostic findings of Labrador Retrievers with oculo-skeletal dysplasia (OSD). Five privately owned dogs. Medical records of dogs diagnosed with OSD from 2008 through 2018 were reviewed. Patients were excluded if lacking disease confirmation through genetic testing (Optigen RD/OSD). Information collected included signalment, physical and ophthalmic examination findings, results of ocular ultrasound and electroretinogram, and digital radiographs of forelimbs and pelvis. All five dogs were Labrador Retrievers, confirmed to be homozygote for the OSD mutation. The main physical abnormalities were vision deficits (5 dogs), short-limbed dwarfism (5), carpal valgus (4), and color dilution alopecia (4). The main ophthalmic anomalies were cataracts (10 eyes), vitreous syneresis (10), retinal separation (6), persistent hyperplastic primary vitreous (2), lens coloboma (2), microphakia (2), and persistent tunica vasculosa lentis (1). Ocular ultrasound and electroretinogram confirmed the diagnoses of retinal separations and persistent hyperplastic primary vitreous. Radiographic changes included shortening of ulna and curved radius (5 dogs), elbow incongruity and osteoarthritis (4 dogs), hip dysplasia (3), and coxofemoral osteoarthritis (2). Available follow-up information (2 dogs) showed progression of cataract from incipient to mature in one dog, necessitating cataract surgery, and progression of cataract and lameness in another dog. The clinical findings of OSD are described in five Labrador Retrievers. DNA testing is critical to diagnose OSD and help eradicate this condition from the breed. Progression of cataracts and osteoarthritis in dogs with OSD warrants yearly monitoring. © 2019 American College of Veterinary Ophthalmologists. Sebbag Lionel L https://orcid.org/0000-0002-0103-0127 Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa. Riggs Alexandra A Lloyd Veterinary Medical Center, Iowa State University, College of Veterinary Medicine, Ames, Iowa. Carnevale Joyce J Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa. eng Case Reports 2019 10 09 England Vet Ophthalmol 100887377 1463-5216 IM cataract dog dwarfism oculoskeletal dysplasia retinal dysplasia retinal separation 2018 11 16 2019 08 25 2019 09 09 2019 10 9 6 0 2019 10 9 6 0 2019 10 10 6 0 ppublish 31595625 10.1111/vop.12715 REFERENCES Carrig CB, MacMillan A, Brundage S, et al. Retinal dysplasia associated with skeletal abnormalities in Labrador Retrievers. J Am Vet Med Assoc. 1977;170:49-57. Meyers VN, Jezyk PF, Aguirre GD, et al. Short-limbed dwarfism and ocular defects in the Samoyed dog. J Am Vet Med Assoc. 1983;183:975-979. Carrig CB, Sponenberg DP, Schmidt GM, et al. Inheritance of associated ocular and skeletal dysplasia in Labrador retrievers. J Am Vet Med Assoc. 1988;193:1269-1272. Carrig CB, Schmidt GM, Tvedten HW. Growth of the radius and ulna in labrador retriever dogs with ocular and skeletal dysplasia. Vet Radiol Ultrasound. 1990;31:165-168. Stavinohova R, Ricketts S, Hartley C, et al. Genetic investigation of oculoskeletal dysplasia in the northern Inuit dog. Annual Scientific Meeting of the European College of Veterinary Ophthalmologists. 2017;E1-E14. Goldstein O, Guyon R, Kukekova A, et al. COL9A2 and COL9A3 mutations in canine autosomal recessive oculoskeletal dysplasia. Mamm Genome. 2010;21:398-408. Williams CJ, Jimenez SA. Heritable diseases of cartilage caused by mutations in collagen genes. J Rheumatol Suppl. 1995;43:28-33. Thrall DE. Textbook of Veterinary Diagnostic Radiology, 7th edn. Philadelphia, PA: WB Saunders; 2017:1000. Okun E, Rubin LF, Collins EM. Retinal breaks in the senile dog eye. Arch Ophthalmol. 1961;66:702-707. Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89:1502-1512. Itoh Y, Maehara S, Yamasaki A, et al. Investigation of fellow eye of unilateral retinal detachment in Shih-Tzu. Vet Ophthalmol. 2010;13:289-293. Barnett KC, Cottrell BD. Ehlers-Danlos syndrome in a dog: ocular, cutaneous and articular abnormalities. J Small Anim Pract. 1987;28:941-946. Grahn BH, Storey E, Cullen CL. Diagnostic ophthalmology. Bilateral lenticular coloboma and cortical cataracts. Can Vet J. 2003;44:245-246. Bavbek T, Ogüt MS, Kazokoglu H. Congenital lens coloboma and associated pathologies. Doc Ophthalmol. 1993;83:313-322. Grahn BH, Storey ES, McMillan C. Inherited retinal dysplasia and persistent hyperplastic primary vitreous in Miniature Schnauzer dogs. Vet Ophthalmol. 2004;7:151-158. Rubin LF. Heredity of retinal dysplasia in Bedlington terriers. J Am Vet Med Assoc. 1968;152:260. Ashton N, Barnett KC, Sachs DD. Retinal dysplasia in the Sealyham terrier. J Pathol Bacteriol. 1968;96:269-272. Collins BK, Collier LL, Johnson GS, et al. Familial cataracts and concurrent ocular anomalies in chow chows. J Am Vet Med Assoc. 1992;200:1485-1491. Gelatt KN, McGill LD. Clinical characteristics of microphthalmia with colobomas of the Australian Shepherd Dog. J Am Vet Med Assoc. 1973;162:393-396. Du F, Acland GM, Ray J. Cloning and expression of type II collagen mRNA: evaluation as a candidate for canine oculo-skeletal dysplasia. Gene. 2000;255:307-316. Seery CM, Davison PF. Collagens of the bovine vitreous. Invest Ophthalmol Vis Sci. 1991;32:1540-1550. Du F, Acland GM, Ray J. A highly polymorphic PCR/RFLP marker in the canine type II collagen gene (COL2A1). Anim Genet. 1998;29:407-408. Smit JJ, Temwitchitr J, Brocks BA, et al. Evaluation of candidate genes as a cause of chondrodysplasia in Labrador retrievers. Vet J. 2011;187:269-271. Du F. Molecular and genetic studies of oculo-skeletal dysplasia (OSD) in dogs. Ph.D. thesis, Cornell university; 2001. Pellegrini B, Acland GM, Ray J. Cloning and characterization of opticin cDNA: evaluation as a candidate for canine oculo-skeletal dysplasia. Gene. 2002;282:121-131. 20301736 NBK2534 University of Washington, Seattle Seattle (WA) GeneReviews® 1993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

8.  Neurological Manifestations of Achondroplasia.LinkIT
Bodensteiner JB
Current neurology and neuroscience reports, 2019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0



1