Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 43951

Scientific:
   Anapsida (anapsid reptiles) 
   Reptilia (reptiles) 
   Rhynchocephalia (beaked reptiles) 

Synonyms:
   Reptilia (reptiles) 

Broader Terms:
   Amniota 
   Chordata (Chordates) 
   Sauropsida 
   Vertebrata (Vertebrate) 

More Specific:
   Agama (Agamas) 
   Amphisbaenia (amphisbaenids) 
   Anapsida 
   Bitis nasicornis (Rhinoceros Viper) 
   Caenophidia 
   Chelonia (Green Turtles) 
   Crocodilia (alligators) 
   Crocodylia 
   Dendroaspis jamesoni (Jamesons Mamba) 
   Diapsida (Diapsid) 
   Kinixys belliana (Bell?s Hingeback Tortoise) 
   Lygodactylus picturatus (Painted Dwarf Gecko) 
   Mabuia 
   Mabuya perrotetii (Teita Mabuya) 
   Mabuya raddoni 
   Rhynchocephalia (tuataras) 
   Sauria (lizards) 
   Serpentes (snakes) 
   Squamata (amphisbaenians) 
   Testudines (terrapins) 
   Typhlops (Common Worm Snake) 
   Unassigned 
   Varanus niloticus (Nile Monitor) 
 
 
Latest Articles on reptiles from uBioRSS


Typhlops vermicularis
Petr Balej - BioLib

External Resources:

Did you mean: Reptilia ?

Common Names: crocodilians, anapsid reptiles, turtles, lepidosaurs



1.  Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians?LinkIT
Bodensteiner BL, Agudelo-Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ
Journal of experimental zoology. Part A, Ecological and integrative physiology J Exp Zool A Ecol Integr Physiol Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? 10.1002/jez.2414 Ectothermic animals, such as amphibians and reptiles, are particularly sensitive to rapidly warming global temperatures. One response in these organisms may be to evolve aspects of their thermal physiology. If this response is adaptive and can occur on the appropriate time scale, it may facilitate population or species persistence in the changed environments. However, thermal physiological traits have classically been thought to evolve too slowly to keep pace with environmental change in longer-lived vertebrates. Even as empirical work of the mid-20th century offers mixed support for conservatism in thermal physiological traits, the generalization of low evolutionary potential in thermal traits is commonly invoked. Here, we revisit this hypothesis to better understand the mechanisms guiding the timing and patterns of physiological evolution. Characterizing the potential interactions among evolution, plasticity, behavior, and ontogenetic shifts in thermal physiology is critical for accurate prediction of how organisms will respond to our rapidly warming world. Recent work provides evidence that thermal physiological traits are not as evolutionarily rigid as once believed, with many examples of divergence in several aspects of thermal physiology at multiple phylogenetic scales. However, slow rates of evolution are often still observed, particularly at the warm end of the thermal performance curve. Furthermore, the context-specificity of many responses makes broad generalizations about the potential evolvability of traits tenuous. We outline potential factors and considerations that require closer scrutiny to understand and predict reptile and amphibian evolutionary responses to climate change, particularly regarding the underlying genetic architecture facilitating or limiting thermal evolution. © 2020 Wiley Periodicals LLC. Bodensteiner Brooke L BL https://orcid.org/0000-0001-6628-1923 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA. Agudelo-Cantero Gustavo A GA http://orcid.org/0000-0002-6649-5523 Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil. Department of Biology - Genetics, Ecology, and Evolution, Aarhus University, Aarhus, Denmark. Arietta A Z Andis AZA https://orcid.org/0000-0002-3368-1346 School of the Environment, Yale University, New Haven, Connecticut, USA. Gunderson Alex R AR Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA. Muñoz Martha M MM https://orcid.org/0000-0001-8297-2396 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA. Refsnider Jeanine M JM https://orcid.org/0000-0001-5154-4356 Department of Environmental Sciences, University of Toledo, Toledo, Ohio, USA. Gangloff Eric J EJ https://orcid.org/0000-0002-9074-8009 Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA. eng Scientific Meeting Grant Company of Biologists Journal Article Review 2020 09 24 United States J Exp Zool A Ecol Integr Physiol 101710204 2471-5638 IM amphibians climate change conservatism evolution plasticity reptiles thermal physiology 2020 04 30 2020 07 17 2020 09 04 2020 9 24 17 16 2020 9 25 6 0 2020 9 25 6 0 aheadofprint 32970931 10.1002/jez.2414 REFERENCE, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Glucocorticoids, energy metabolites, and immunity vary across allostatic states for plateau side-blotched lizards (Uta stansburiana uniformis) residing in a heterogeneous thermal environment.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hudson SB, Lidgard AD, French SS<br><font color=gray><i>Journal of experimental zoology. Part A, Ecological and integrative physiology J Exp Zool A Ecol Integr Physiol Glucocorticoids, energy metabolites, and immunity vary across allostatic states for plateau side-blotched lizards (Uta stansburiana uniformis) residing in a heterogeneous thermal environment. 10.1002/jez.2415 Reptiles rely on thermal heat exchange to achieve body temperatures (Tbody ) conducive to maintaining homeostasis. Diurnal changes in the thermal environment are therefore liable to influence allostatic mediation of survival processes (e.g., immunity) during environmental challenges or stressors. However, the extent to which Tbody prompts individual variation in physiology remains largely unexplored in reptiles. Our study tested how circulating energy-mobilizing hormone, energy metabolites, and immunity can vary across basal and stress-induced allostatic states for plateau side-blotched lizards (Uta stansburiana uniformis) residing in a heterogeneous thermal environment. We collected baseline and acute stress blood samples from male lizards to compare changes in plasma corticosterone (CORT), glucose, and bacterial killing ability (BKA) in relation to each other and Tbody . We hypothesized each physiological parameter differs between allostatic states, whereby stress-induced activity increases from baseline. At basal and stress-induced states, we also hypothesized circulating CORT, glucose, and BKA directly correspond with each other and Tbody . We found both CORT and BKA increased while glucose instead decreased from acute stress. At basal and stress-induced allostatic states, we found CORT to be directly related to Tbody while BKA was inversely related to CORT. We also found BKA and glucose were directly related at baseline, but inversely related following acute stress. Overall, these results demonstrate allostatic outcomes from acute stress in a free-living reptile and the role of temperature in mediating energetic state and immunity. Future research on reptilian allostasis should consider multiple environmental conditions and their implications for physiological performance and survival. © 2020 Wiley Periodicals LLC. Hudson Spencer B SB Department of Biology, Utah State University, Logan, Utah, USA. Ecology Center, Utah State University, Logan, Utah, USA. Lidgard Audrey D AD Department of Biology, Utah State University, Logan, Utah, USA. French Susannah S SS https://orcid.org/0000-0001-8923-9728 Department of Biology, Utah State University, Logan, Utah, USA. Ecology Center, Utah State University, Logan, Utah, USA. eng NSF IOS 1350070 National Science Foundation Journal Article 2020 09 22 United States J Exp Zool A Ecol Integr Physiol 101710204 2471-5638 IM acute stress allostasis bacterial killing ability corticosterone ectotherm glucose reptile temperature 2020 03 21 2020 08 17 2020 09 08 2020 9 22 8 42 2020 9 23 6 0 2020 9 23 6 0 aheadofprint 32959993 10.1002/jez.2415 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Functional morphology, diversity, and evolution of yolk processing specializations in embryonic <b>reptiles</b> and birds.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Blackburn DG<br><font color=gray><i>Journal of morphology J. Morphol. Functional morphology, diversity, and evolution of yolk processing specializations in embryonic reptiles and birds. 10.1002/jmor.21267 Evolution of the terrestrial, amniotic egg of vertebrates required new mechanisms by which yolk material could be processed for embryonic use. Recent studies on each of the major extant reptile groups have revealed elaborate morphological specializations for yolk processing, features that differ dramatically from those of birds. In the avian pattern, liquid yolk is housed in a yolk sac whose endodermal lining absorbs and digests yolk material and sends resultant nutrients into the blood circulation. In snakes, lizards, turtles, and crocodilians, as documented herein, the yolk sac becomes invaded by endodermal cells that proliferate and phagocytose yolk material. Blood vessels then invade, and the endodermal cells become arranged around them, forming elongated "spaghetti-like" strands that fill the yolk sac cavity. This pattern provides an effective means by which yolk material is cellularized, digested, and transported by vitelline vessels to the developing embryo. Phylogenetically, the (non-avian) "reptilian" pattern was ancestral for sauropsids and was modified or replaced in ancestors to birds. This review postulates that evolution of the "avian" pattern involved increased reliance on extracellular digestion of yolk, allowing embryonic development to occur more rapidly than in typical reptiles. Comparative studies of yolk processing that draw on morphological, biochemical, molecular approaches are needed to explain how and why the "reptilian" pattern was replaced in birds or their archosaurian ancestors. © 2020 Wiley Periodicals LLC. Blackburn Daniel G DG https://orcid.org/0000-0002-0446-6102 Department of Biology, Electron Microscopy Center, Trinity College, Hartford, Connecticut, USA. eng Thomas S. Johnson Distinguished Professorship Journal Article Review 2020 09 22 United States J Morphol 0406125 0022-2887 IM amniote egg egg development embryo nutrition reproduction yolk sac 2020 07 23 2020 08 24 2020 09 08 2020 9 22 12 13 2020 9 23 6 0 2020 9 23 6 0 aheadofprint 32960458 10.1002/jmor.21267 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hallinger MJ, Taubert A, Hermosilla C<br><font color=gray><i>Parasitology research, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Aerobic scope and climate warming: Testing the "plastic floors and concrete ceilings" hypothesis in the estuarine crocodile (Crocodylus porosus).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Rodgers EM, Franklin CE<br><font color=gray><i>Journal of experimental zoology. Part A, Ecological and integrative physiology J Exp Zool A Ecol Integr Physiol Aerobic scope and climate warming: Testing the "plastic floors and concrete ceilings" hypothesis in the estuarine crocodile (Crocodylus porosus). 10.1002/jez.2412 Ectotherms are predicted to show a reduction in absolute aerobic scope (AAS?=?maximum?-?standard metabolic rates) if habitat temperatures surpass optima. However, thermal phenotypic plasticity may play a protective role in the maintenance of AAS. In fishes, resting physiological rates ("physiological floors," e.g., standard metabolic rates [SMR]) are typically thermally phenotypically plastic whilst maximum physiological rates ("physiological ceilings," e.g., maximum metabolic rate [MMR]) are typically fixed. This observation led to the "plastic floors and concrete ceilings" hypothesis. The applicability of this hypothesis to nonavian reptiles remains untested, despite this group being at risk of climate warming-induced extinction. We tested this hypothesis in juvenile estuarine crocodiles (Crocodylus porosus) by maintaining animals at a water temperature indicative of current summer conditions (28°C) or at a water temperature reflecting a high magnitude of warming (34°C; i.e., thermal acclimation treatments) for 6 months. Metabolic traits (SMR, MMR, and AAS) were subsequently quantified between 28-36°C. A twofold increase in SMR was observed between 28°C and 36°C in both thermal acclimation treatments (pooled Q10 ?=?3.2). MMR was thermally insensitive between 28°C and 36°C in 28°C-acclimated crocodiles but doubled between 28°C and 36°C in 34°C-acclimated crocodiles. These findings demonstrate thermal phenotypic plasticity in a "physiological ceiling" (MMR) and rigidity in a "physiological floor" (SMR), showing the opposite pattern to many fishes. Overall, crocodiles displayed impressive aerobic capacity at temperatures reflecting climate warming scenarios. AAS remained unchanged across an 8°C temperature range in 28°C-acclimated animals and doubled in 34°C-acclimated animals. © 2020 Wiley Periodicals LLC. Rodgers Essie M EM http://orcid.org/0000-0003-3514-3653 School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia. Franklin Craig E CE https://orcid.org/0000-0003-1315-3797 School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia. eng Australian Research Council University of Queensland Journal Article 2020 09 21 United States J Exp Zool A Ecol Integr Physiol 101710204 2471-5638 IM aerobic capacity climate change ectotherm metabolic rate phenotypic plasticity thermal acclimation 2020 03 29 2020 08 30 2020 09 01 2020 9 21 6 30 2020 9 22 6 0 2020 9 22 6 0 aheadofprint 32954668 10.1002/jez.2412 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Effect of early thermal environment on the morphology and performance of a lizard species with bimodal reproduction.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Beltrán I, Durand V, Loiseleur R, Whiting MJ<br><font color=gray><i>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Insights into the evolution of IG genes in Amphibians and <b>reptiles</b>.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Olivieri DN, Mirete-Bachiller S, Gambón-Deza F<br><font color=gray><i>Developmental and comparative immunology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Catalogue of herpetological specimens of the Ewha Womans University Natural History Museum (EWNHM), Republic of Korea.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Shin Y, Jang Y, Allain SJR, Borzée A<br><font color=gray><i>ZooKeys, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Individual and age-related variation of cellular brain composition in a squamate reptile.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kverková K, Polonyiová A, Kubi?ka L, N?mec P<br><font color=gray><i>Biology letters, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The Effects of Premature Tooth Extraction and Damage on Replacement Timing in the Green Iguana.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Brink KS, Wu P, Chuong CM, Richman JM<br><font color=gray><i>Integrative and comparative biology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=reptiles&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>