Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 334

Scientific:
   Acanthogobius (Asian gobies) 
   Acentrogobius (checkered gobies) 
   Awaous (river gobies) 
   Bathygobius (frillfin gobies) 
   Brachygobius (bumblebee gobies) 
   Clevelandia (arrow gobies) 
   Eucyclogobius (tidewater gobies) 
   Evorthodus (lyre gobies) 
   Exyrias (fantail gobies) 
   Glossogobius (flathead gobies) 
   Gobiidae (gobies) 
   Gobioides (eel gobies) 
   Gobioididae (eellike gobies) 
   Gobionellus (darter gobies) 
   Gobiopsis (dragonface gobies) 
   Gobiosoma (naked gobies) 
   Kraemeriidae (sand gobies) 
   Lentipes (Hiukole gobies) 
   Lophogobius (crested gobies) 
   Mangarinus (chiseltooth gobies) 
   Microgobius (bannerfin gobies) 
   Mugilogobius (mullet gobies) 
   Neogobius (round gobies) 
   Oligolepis (barecheek gobies) 
   Oxyurichthys (arrowfin gobies) 
   Palutrus (yellowstreak gobies) 
   Proterorhinus (tubenose gobies) 
   Pseudogobius (snouted gobies) 
   Redigobius (dualspot gobies) 
   Rhyacichthyidae (loach gobies) 
   Sicydium (American rockclimbing gobies) 
   Sicyopterus (fatsnout rockclimbing gobies) 
   Sicyopus (largemouth rockclimbing gobies) 
   Stenogobius (coastal stream gobies) 
   Stiphodon (riffle gobies) 
   Taeniodes (sharptooth worm gobies) 
   Tridentiger (chameleon gobies) 
   Trypauchenidae (burrowing gobies) 
   Yongeichthys (toxic gobies) 

Synonyms:
   Gobiidae (true gobies) 
   Gobioidei (gobies) 
   Gobius (gobies) 

Broader Terms:
   Eleotridae (sleepers) 
   Gobiidae (gobies) 
   Gobioidei (gobies) 
   Gobius (gobies) 
   Nomeidae (driftfishes) 
   Perciformes (perch-like fishes) 
   Percomorpha 
   unclassified 

More Specific:
   Aboma 
   Abranches 
   Acanthogobius (Asian gobies) 
   Acentrogobius (checkered gobies) 
   Afurcagobius 
   Agunia 
   Akko 
   Allogobius 
   Amblycentrus 
   Amblychaeturichthys 
   Amblyeleotris 
   Amblygobius 
   Amblyopus 
   Amblyotrypauchen 
   Amoya 
   Anatirostrum 
   Aparrius 
   Aphia 
   Aphya 
   Apocryptes 
   Apocryptichthys 
   Apocryptodon 
   Apollonia 
   Aprocryptodon 
   Arcygobius 
   Arenigobius 
   Argentina (silverweed) 
   Aruma 
   Asra 
   Asteropteryx 
   Asterropterix 
   Asterropteryx 
   Astrabe 
   Astrogobius 
   Atherna (friars) 
   Atuona 
   Aulopareia 
   Austrolethops 
   Awaous (river gobies) 
   Awarous 
   Awavus 
   Barbatogobius 
   Barbulifer 
   Barbuligobius 
   Batanga 
   Bathygobius (mapos) 
   Batman 
   Benthophiloides 
   Benthophilus 
   Bentophilus 
   Biat 
   Bikinigobius 
   Boleophthalmus 
   Boleopthalmus 
   Bollmania 
   Bollmannia 
   Brachyamblyopus 
   Brachyeleotris 
   Brachygobius (bumblebee gobies) 
   Brachyochirus 
   Bryanina 
   Bryaninops 
   Bubyr 
   Buenia 
   Cabillus 
   Cabotia 
   Caecocobius 
   Caecogobius 
   Caffrogobius 
   Calamaia 
   Calamiana 
   Callamiana 
   Calleleotris 
   Callogobius 
   Caragobioides 
... 
 


Ophiogobius jenynsi
Guiamarina

External Resources:

Did you mean: Gobi, Gobie or goby?



1.  Supermatrix phylogeny resolves goby lineages and reveals unstable root of Gobiaria.LinkIT
McCraney WT, Thacker CE, Alfaro ME
Molecular phylogenetics and evolution, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids.LinkIT
Katayama Y, Saito K, Sakamoto T
International journal of molecular sciences, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Climbing Waterfalls: How Metabolism and Behavior Impact Locomotor Performance of Tropical Climbing Gobies on Reunion Island.LinkIT
Lagarde R, Ponton D, Borie G, Hiebert A, LeMoine CMR
Physiological and biochemical zoology : PBZ, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Freshwater gobies 30 million years ago: New insights into character evolution and phylogenetic relationships of ?Pirskeniidae (Gobioidei, Teleostei).LinkIT
Reichenbacher B, P?ikryl T, Cerwenka AF, Keith P, Gierl C, Dohrmann M
PloS one, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  Facultative amphidromy and pelagic larval duration plasticity of Rhinogobius formosanus (Teleostei, Gobioidei).LinkIT
Liao TY, Huang WC, Iizuka Y, Chou MT, Shiao JC
ZooKeys, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

6.  Seasonal and developmental diet shifts in sympatric and allopatric intertidal gobies determined by stomach content and stable isotope analysis.LinkIT
Carbia PS, Brown C, Park JM, Gaston TF, Raoult V, Williamson JE
Journal of fish biology J. Fish Biol. Seasonal and developmental diet shifts in sympatric and allopatric intertidal gobies determined by stomach content and stable isotope analysis. 10.1111/jfb.14463 Resource partitioning facilitates the coexistence of sympatric species through spatial, temporal and/or trophic strategies. Fishes living in the intertidal zone demonstrate highly adaptive plastic behaviour, including resource partitioning, through spatial and temporal shifts in diet and microhabitat. Although intertidal fish assemblages are influenced by inter- and intraspecific competition, few studies have compared the extent of resource partitioning between sympatric species in the context of trophic niche plasticity. Here we used complementary approaches, stomach content and stable isotope (?13 C and ?15 N) analyses, to evaluate seasonal and developmental shifts in trophic niche position in two sympatric (Favonigobius lentiginosus and Bathygobius krefftii) and one allopatric (Bathygobius cocosensis) species of intertidal goby. The results indicate that resource partitioning in the two sympatric species varied with season, with almost no trophic niche overlap in summer to about ~30% overlap in winter. Also, evidence of dietary changes was found in B. cocosensis, which is likely associated with a shift in microhabitat and intraspecific competition. The findings highlight the temporal range of behavioural plasticity in trophic niche position of intertidal gobies, which likely has high adaptive value in the dynamic intertidal zone. © 2020 The Fisheries Society of the British Isles. Carbia Penelope S PS https://orcid.org/0000-0001-9876-1454 Department of Biological Sciences, Macquarie University, Sydney, Australia. Brown Culum C Department of Biological Sciences, Macquarie University, Sydney, Australia. Park Joo M JM Department of Biological Sciences, Macquarie University, Sydney, Australia. Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin, Republic of Korea. Gaston Troy F TF School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia. Raoult Vincent V School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia. Williamson Jane E JE Department of Biological Sciences, Macquarie University, Sydney, Australia. eng Journal Article 2020 07 16 England J Fish Biol 0214055 0022-1112 IM Bathygobius Favonigobius resident resource partitioning stable isotopes 2020 03 11 2020 06 05 2020 07 14 2020 7 17 6 0 2020 7 17 6 0 2020 7 17 6 0 aheadofprint 32671836 10.1111/jfb.14463 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Intertidal <b>gobies</b> acclimate rate of luminance change for background matching with shifts in seasonal temperature.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>da Silva CRB, van den Berg CP, Condon ND, Riginos C, Wilson RS, Cheney KL<br><font color=gray><i>The Journal of animal ecology J Anim Ecol Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature. 1735-1746 10.1111/1365-2656.13226 Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems. © 2020 British Ecological Society. da Silva Carmen R B CRB https://orcid.org/0000-0003-0160-5872 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. School of Biological Sciences, Monash University, Clayton, Vic., Australia. van den Berg Cedric P CP https://orcid.org/0000-0001-6422-7237 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Condon Nicholas D ND https://orcid.org/0000-0002-1833-1129 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. Riginos Cynthia C https://orcid.org/0000-0002-5485-4197 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Wilson Robbie S RS https://orcid.org/0000-0002-0116-5427 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Cheney Karen L KL https://orcid.org/0000-0001-5622-9494 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia. eng Journal Article 2020 04 13 England J Anim Ecol 0376574 0021-8790 IM acclimation background matching camouflage colour change intertidal luminance change plasticity thermal performance 2020 01 20 2020 03 10 2020 4 1 6 0 2020 4 1 6 0 2020 4 1 6 0 ppublish 32227334 10.1111/1365-2656.13226 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Detection of Koi Herpesvirus (KHV) and Carp Oedema Virus (CEV) in Invasive Round Goby, <i>Neogobius Melanostomus</i> Pallas, 1814, from Poland and Germany.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Jin Y, Adamkowska N, Kie?pi?ska J, Bergmann SM<br><font color=gray><i>Journal of veterinary research, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>New species of Silhouettea (Teleostei: Gobiidae) from Qeshm Island, Iran and the DNA barcoding of the Persian Gulf and Oman Sea <b>gobies</b>.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kova?i? M, Sadeghi R, Esmaeili HR<br><font color=gray><i>Zootaxa, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Amphidromy can be a flexible life history strategy in some Hawai'ian <b>gobies</b>.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kaiser MJ<br><font color=gray><i>Journal of fish biology J. Fish Biol. Amphidromy can be a flexible life history strategy in some Hawai'ian gobies. 287 10.1111/jfb.14252 Kaiser Michel J MJ eng Journal Article Comment England J Fish Biol 0214055 0022-1112 IM J Fish Biol. 2020 Feb;96(2):456-468 31814124 Animals Fishes Life History Traits 2020 2 6 6 0 2020 2 6 6 0 2020 7 17 6 0 ppublish 32022935 10.1111/jfb.14252 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=gobies&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>