Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 302

Scientific:
   Bursera microphylla (littleleaf elephant tree) 

Synonyms:
   Amyris fagaroides 
   Boswellia papyrifera (elephant tree) 
   Bursera fagaroides (copal) 
   Bursera fagaroides elongata (fragrant bursera) 
   Bursera microphylla (elephant tree) 
   Bursera odorata (Torote Blanco) 
   Elaphrium fagaroides 
   Pachycormus discolor (elephant tree) 
   Terebinthus fagaroides 

Broader Terms:
   Boswellia 
   Bursera 
   Pachycormus 
   Sapindales 
   elephant 

More Specific:
   Bursera fagaroides elongata (fragrant bursera) 
   Bursera fagaroides fagaroides (fragrant bursera) 
   Bursera fagaroides purpusii 
 
 
Latest Articles on elephant tree from uBioRSS


External Resources:



1.  Browsing wildlife and heavy grazing indirectly facilitate sapling recruitment in an East African savanna.LinkIT
LaMalfa EM, Riginos C, Veblen KE
Ecological applications : a publication of the Ecological Society of AmericaEcol ApplBrowsing wildlife and heavy grazing indirectly facilitate sapling recruitment in an East African savanna.e0239910.1002/eap.2399Management of tree cover, either to curb bush encroachment or to mitigate losses of woody cover to over-browsing, is a major concern in savanna ecosystems. Once established, trees are often "trapped" as saplings, since interactions among disturbance, plant competition, and precipitation delay sapling recruitment into adult size classes. Saplings can be directly suppressed by wildlife browsing and competition from adjacent plants, and indirectly facilitated by grazers, such as cattle, which feed on neighboring grasses. Yet few experimental studies have simultaneously quantified the effects of cattle and wildlife on sapling growth, particularly over long time scales. We used a series of replicated 4-ha herbivore-manipulation plots to investigate the net effects of wildlife and moderate cattle grazing on Acacia drepanolobium sapling growth over 10 years that encompassed extended wet and dry periods. We also simulated more intense cattle grazing using grass removal treatments (0.5-m radius around saplings), and we quantified the role of intraspecific tree competition using neighborhood tree surveys (trees within a 3-m radius). Wildlife, which included elephants, had a positive effect on sapling growth. Wildlife also reduced neighbor tree density during the 10-yr study, which likely caused the positive effect of wildlife on saplings. Although moderate cattle grazing did not affect sapling growth, grass removal treatments simulating heavy grazing increased sapling growth. Both grass removal and neighbor tree effects on saplings were strongest during above-average rainfall years following drought. This highlights that livestock-driven reductions in grass cover and catastrophic wildlife damage to trees during droughts present a need, or an opportunity, for targeted management of sapling growth and woody plant cover during ensuing wet periods.© 2021 by the Ecological Society of America.LaMalfaEric MEM0000-0003-1338-072XDepartment of Wildland Resources & Ecology Center, Utah State University, Logan, Utah, 84321, USA.Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya.RiginosCorinnaC0000-0001-9082-5206Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya.The Nature Conservancy, 258 Main Street, Suite 200, Lander, Wyoming, 82520, USA.VeblenKari EKE0000-0001-7523-3368Department of Wildland Resources & Ecology Center, Utah State University, Logan, Utah, 84321, USA.Mpala Research Centre, P.O. Box 555, Nanyuki, Kenya.engfigshare10.6084/m9.figshare.14210648Journal ArticleResearch Support, U.S. Gov't, Non-P.H.S.Research Support, Non-U.S. Gov't20210730United StatesEcol Appl98898081051-0761IMKenya Long-term Exclosure Experimentbrowse trapbush encroachmentdensity dependencenative invasionself-thinningtree-grass interactions2020100720200609202103032021736020217360202172658ppublish3421243710.1002/eap.2399Literature Cited, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Conservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Sandhage-Hofmann A, Linstädter A, Kindermann L, Angombe S, Amelung W<br><font color=gray><i>Global change biologyGlob Chang BiolConservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass.4601-461410.1111/gcb.15779Nature conservation and restoration in terrestrial ecosystems is often focused on increasing the numbers of megafauna, expecting them to have positive impacts on ecological self-regulation processes and biodiversity. In sub-Saharan Africa, conservation efforts also aspire to protect and enhance biodiversity with particular focus on elephants. However, elephant browsing carries the risk of woody biomass losses. In this context, little is known about how increasing elephant numbers affects carbon stocks in soils, including the subsoils. We hypothesized that (1) increasing numbers of elephants reduce tree biomass, and thus the amount of C stored therein, resulting (2) in a loss of soil organic carbon (SOC). If true, a negative carbon footprint could limit the sustainability of elephant conservation from a global carbon perspective. To test these hypotheses, we selected plots of low, medium, and high elephant densities in two national parks and adjacent conservancies in the Namibian component of the Kavango Zambezi Transfrontier Area (KAZA), and quantified carbon storage in both woody vegetation and soils (1 m). Analyses were supplemented by the assessment of soil carbon isotopic composition. We found that increasing elephant densities resulted in a loss of tree carbon storage by 6.4 t ha-1 . However, and in contrast to our second hypothesis, SOC stocks increased by 4.7 t ha-1 with increasing elephant densities. These higher SOC stocks were mainly found in the topsoil (0-30 cm) and were largely due to the formation of SOC from woody biomass. A second carbon input source into the soils was megaherbivore dung, which contributed with 0.02-0.323 t C ha-1  year-1 to ecosystem carbon storage in the low and high elephant density plots, respectively. Consequently, increasing elephant density does not necessarily lead to a negative C footprint, as soil carbon sequestration and transient C storage in dung almost compensate for losses in tree biomass.© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.Sandhage-HofmannAlexandraA0000-0002-1766-8002Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Bonn, Germany.LinstädterAnjaA0000-0003-0038-9557Institute of Crop Science and Resource Conservation, Section Grassland Ecology and Management, University of Bonn, Bonn, Germany.Institute of Biochemistry and Biology, Biodiversity and Systematic Botany, University of Potsdam, Potsdam, Germany.KindermannLianaL0000-0002-8126-2576Institute of Crop Science and Resource Conservation, Section Grassland Ecology and Management, University of Bonn, Bonn, Germany.Institute of Biochemistry and Biology, Biodiversity and Systematic Botany, University of Potsdam, Potsdam, Germany.AngombeSimonS0000-0002-5144-1370Faculty of Agriculture & Natural Resources, Neudamm Campus, University of Namibia, Windhoek, Namibia.AmelungWulfWInstitute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Bonn, Germany.engJournal Article20210717EnglandGlob Chang Biol98887461354-10130Soil7440-44-0CarbonIMAnimalsBiomassCarbonCarbon SequestrationEcosystemElephantsSoilcarbon sequestrationconservationelephantssoil organic carbonwoody biomass202106142021061420210621202172602021921602021711731ppublish3419767910.1111/gcb.15779REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>First Description of a Satellite DNA in Manatees' Centromeric Regions.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Valeri MP, Dias GB, do Espírito Santo AA, Moreira CN, Yonenaga-Yassuda Y, Sommer IB, Kuhn GCS, Svartman M<br><font color=gray><i>Frontiers in genetics, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Woody encroachment happens via intensification, not extensification, of species ranges in an African savanna.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Zhou Y, Tingley MW, Case MF, Coetsee C, Kiker GA, Scholtz R, Venter FJ, Staver AC<br><font color=gray><i>Ecological applications : a publication of the Ecological Society of AmericaEcol ApplWoody encroachment happens via intensification, not extensification, of species ranges in an African savanna.e0243710.1002/eap.2437Widespread woody encroachment is a prominent concern for savanna systems as it is often accompanied by losses in productivity and biodiversity. Extensive ecosystem-level work has advanced our understanding of its causes and consequences. However, there is still debate over whether local management can override regional and global drivers of woody encroachment, and it remains largely unknown how encroachment influences woody community assemblages. Here, we examined species-level changes in woody plant distributions and size structure from the late 1980s to the late 2000s based on spatially intensive ground-based surveys across Kruger National Park, South Africa. This study region spans broad gradients in rainfall, soil texture, fire frequency, elephant density, and other topographic variables. Species-level changes in frequency of occurrence and size class proportion reflected widespread woody encroachment primarily by Dichrostachys cinerea and Combretum apiculatum, and a loss of large trees mostly of Sclerocarya birrea and Acacia nigrescens. Environmental variables determining woody species distributions across Kruger varied among species but did not change substantially between two sampling times, indicating that woody encroachers were thickening within their existing ranges. Overall, more areas across Kruger were found to have an increased number of common woody species through time, which indicated an increase in stem density. These areas were generally associated with decreasing fire frequency and rainfall but increasing elephant density. Our results suggest that woody encroachment is a widespread but highly variable trend across landscapes in Kruger National Park and potentially reflects an erosion of local heterogeneity in woody community assemblages. Many savanna managers, including in Kruger, aim to manage for heterogeneity in order to promote biodiversity, where homogenization of vegetation structure counters this specific goal. Increasing fire frequency has some potential as a local intervention. However, many common species increased in commonness even under near-constant disturbance conditions, which likely limits the potential for managing woody encroachment in the face of drivers beyond the scope of local control. Regular field sampling coupled with targeted fire management will enable more accurate monitoring of the rate of encroachment intensification.© 2021 by the Ecological Society of America.ZhouYongYhttps://orcid.org/0000-0003-2546-8462Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, 06511, USA.Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, 06511, USA.TingleyMorgan WMWhttps://orcid.org/0000-0002-1477-2218Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA.CaseMadelon FMFhttps://orcid.org/0000-0003-4830-5324Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, 06511, USA.Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA.CoetseeCorliChttps://orcid.org/0000-0001-6797-9311Scientific Services, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa.School of Natural Resource Management, Nelson Mandela University, George Campus, George, 6529, South Africa.KikerGregory AGAhttps://orcid.org/0000-0001-6215-0686Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, 32611, USA.School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Scottsville, 3209, South Africa.ScholtzRheinhardtRhttps://orcid.org/0000-0002-9275-6504Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.VenterFreek JFJBalule Nature Reserve, Hoedspruit, Limpopo Province, South Africa.StaverA CarlaAChttps://orcid.org/0000-0002-2384-675XDepartment of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, 06511, USA.Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, 06511, USA.engYale UniversityJournal Article20210809United StatesEcol Appl98898081051-0761IMAfrican savannaKruger National Parkcommunity assemblagesfirerainfallspecies distribution modelingwoody encroachment20210205202104062021811602021811602021810654aheadofprint3437415510.1002/eap.2437Literature Cited, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Lignans from <i>Bursera fagaroides</i>: Chemistry, Pharmacological Effects and Molecular Mechanism. A Current Review.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Antúnez-Mojica M, Romero-Estrada A, Hurtado-Díaz I, Miranda-Molina A, Alvarez L<br><font color=gray><i>Life (Basel, Switzerland), 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Limited ant co-occurrence and defensive mutualism in <i>Acacia</i> plants in a West African savanna.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Djogbenou A, Azihou AF, Dassou AG, Assogbadjo AE, Kassa B, Gaoue OG<br><font color=gray><i>AoB PLANTS, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Termite mound cover and abundance respond to herbivore-mediated biotic changes in a Kenyan savanna.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Charles GK, Riginos C, Veblen KE, Kimuyu DM, Young TP<br><font color=gray><i>Ecology and evolution, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Complete mitochondrial genome of a potential vector louse fly, <i>Lipoptena grahami</i> (Diptera, Hippoboscidae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Wang M, Wang J, Guo Y, Zheng Q, Nouhoum D, Meng F<br><font color=gray><i>Mitochondrial DNA. Part B, Resources, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Lowering the density: ants associated with the myrmecophyte <i>Tillandsia caput-medusae</i> diminish the establishment of epiphytes.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Vergara-Torres CA, Díaz-Castelazo C, Toledo-Hernández VH, Flores-Palacios A<br><font color=gray><i>AoB PLANTS, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Heterogeneity in African savanna elephant distributions and their impacts on trees in Kruger National Park, South Africa.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Abraham JO, Goldberg ER, Botha J, Staver AC<br><font color=gray><i>Ecology and evolution, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=elephant+tree&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>