Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 60

Synonyms:
   Symphodus 

Broader Terms:
   Labridae (wrasses) 
   Symphodus 

More Specific:
   Symphodus bailloni (Baillon's wrasse) 
   Symphodus caeruleus 
   Symphodus cinereus (grey wrasse) 
   Symphodus cinereus cinereus 
   Symphodus cinereus staitii 
   Symphodus doderleini 
   Symphodus fulvescens 
   Symphodus mediterraneus (axillary wrasse) 
   Symphodus melanocercus (blacktailed wrasse) 
   Symphodus melops (corkwing wrasse) 
   Symphodus ocellaris 
   Symphodus ocellatus 
   Symphodus ocellatus bertini 
   Symphodus ocellatus ocellatus 
   Symphodus pavo 
   Symphodus quinquemaculatus 
   Symphodus roissali (Five-spotted wrasse) 
   Symphodus rostratus 
   Symphodus scina 
   Symphodus tinca (seŮorita) 
   Symphodus trutta 
 
 
Latest Articles on Symphodus from uBioRSS
Hatschekia labracis (van Beneden, 1871) - WoRMS latest edits
Intraspecific variability in reproductive patterns in the temperate hermaph... - Marine and Freshwater Research


Symphodus melops
McMammal - BioLib

External Resources:

Did you mean: Sympodia ?



1.  Epinephelus sicanus (Doderlein, 1882) (Perciformes: Serranidae: Epinephelinae), a valid species of grouper from the Mediterranean Sea.LinkIT
Bellia E, Cerasa G, Cigna V, Brutto SL, Massa B
Zootaxa, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Comments on "The marine teleost fishes of the Sea of Marmara; an updated and annotated checklist" by Art√ľz amp; Fricke (2019).LinkIT
Bilecenoglu M
Zootaxa, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Demographic history has shaped the strongly differentiated corkwing wrasse populations in Northern Europe.LinkIT
Mattingsdal M, Jorde PE, Knutsen H, Jentoft S, Stenseth NC, Sodeland M, Robalo JI, Hansen MM, André C, Blanco Gonzalez E
Molecular ecology Mol. Ecol. Demographic history has shaped the strongly differentiated corkwing wrasse populations in Northern Europe. 160-171 10.1111/mec.15310 Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60¬†km) in the North Sea-Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post-glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes. ¬© 2019 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. Mattingsdal Morten M 0000-0003-4440-0324 Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway. Jorde Per Erik PE 0000-0001-5515-7257 Institute of Marine Research, Fl√łdevigen, Norway. Knutsen Halvor H Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway. Institute of Marine Research, Fl√łdevigen, Norway. Jentoft Sissel S 0000-0001-8707-531X Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway. Stenseth Nils Christian NC Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway. Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway. Sodeland Marte M Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway. Robalo Joana I JI Marine and Environmental Sciences Centre, ISPA Instituto Universit√°rio de Ci√™ncias Psicol√≥gicas, Sociais e da Vida, Lisboa, Portugal. Hansen Michael M MM 0000-0001-5372-4828 Department of Bioscience, Aarhus University, Aarhus C, Denmark. Andr√© Carl C Department of Marine Sciences-Tj√§rn√∂, G√∂teborg University, Str√∂mstad, Sweden. Blanco Gonzalez Enrique E 0000-0002-2631-2331 Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway. Norwegian College of Fishery Science, UiT The Arctic University of Norway, Troms√ł, Norway. eng Journal Article Research Support, Non-U.S. Gov't 2019 12 04 England Mol Ecol 9214478 0962-1083 IM aquaculture fish landscape genetics phylogeography population genetics-empirical 2019 04 01 2019 11 06 2019 11 13 2019 11 17 6 0 2019 11 17 6 0 2019 11 17 6 0 ppublish 31733084 10.1111/mec.15310 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Unravelling the evolution of complex reproductive traits with phenotypic engineering.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Fisher HS<br><font color=gray><i>Molecular ecology Mol. Ecol. Unravelling the evolution of complex reproductive traits with phenotypic engineering. 3461-3463 10.1111/mec.15183 The social dynamics surrounding courtship, mating and parental care are complex enough when just a single male and female are involved, but for species that employ multiple strategies for achieving fertilization success, the network of interactions among rivals, allies and suitors can be utterly complicated. Such is the case in the ocellated wrasse, Symphodus ocellatus, in which males adopt one of three mating strategies. The large, colourful "nesting males" court females, defend territories and care for fertilized eggs until they hatch. The smaller "satellite males" help the nesting males court females and guard against the third morph, the "sneaker males", which sneak in when a nesting male is spawning with a female and surreptitiously release sperm. Sneaker males perform no courtship displays nor defend territories, so their reproductive investment is devoted entirely to sperm production. And these alternative male strategies work: 100% of nests contain some eggs fertilized by sneaker and satellite males, despite the fact that parental care is solely the responsibility of nesting males In this issue of Molecular Ecology, work to untangle the proximate mechanisms regulating the reproductive physiology of nesting males and their behaviour towards other males, which impacts the entire social network. Moreover, they describe how variation in neuroendocrine regulation can give rise to variation in reproductive traits, upon which sexual selection can act. ¬© 2019 John Wiley & Sons Ltd. Fisher Heidi S HS 0000-0001-5622-4335 Department of Biology, University of Maryland, College Park, Maryland. eng News 2019 08 08 England Mol Ecol 9214478 0962-1083 IM alternative mating type behavior/social evolution fish sexual selection 2019 07 10 2019 07 15 2019 8 10 6 0 2019 8 10 6 0 2019 8 10 6 0 ppublish 31397030 10.1111/mec.15183 REFERENCES, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Experimentally induced variation in neuroendocrine processes affects male reproductive behaviour, sperm characteristics and social interactions.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Nugent BM, Stiver KA, Hofmann HA, Alonzo SH<br><font color=gray><i>Molecular ecology Mol. Ecol. Experimentally induced variation in neuroendocrine processes affects male reproductive behaviour, sperm characteristics and social interactions. 3464-3481 10.1111/mec.14999 While extensive research has focused on how social interactions evolve, the fitness consequences of the neuroendocrine mechanisms underlying these interactions have rarely been documented, especially in the wild. Here, we measure how the neuroendocrine mechanisms underlying male behaviour affect mating success and sperm competition in the ocellated wrasse (Symphodus ocellatus). In this species, males exhibit three alternative reproductive types. "Nesting males" provide parental care, defend territories and form cooperative associations with unrelated "satellites," who cheat by sneaking fertilizations but help by reducing sperm competition from "sneakers" who do not cooperate or provide care. To measure the fitness consequences of the mechanisms underlying these social interactions, we used "phenotypic engineering" that involved administering an androgen receptor antagonist (flutamide) to wild, free-living fish. Nesting males treated with flutamide shifted their aggression from sneakers to satellite males and experienced decreased submissiveness by sneaker males (which correlated with decreased nesting male mating success). The preoptic area (POA), a region controlling male reproductive behaviours, exhibited dramatic down-regulation of androgen receptor (AR) and vasotocin 1a receptor (V1aR) mRNA following experimental manipulation of androgen signalling. We did not find a direct effect of the manipulation on male mating success, paternity or larval production. However, variation in neuroendocrine mechanisms generated by the experimental manipulation was significantly correlated with changes in behaviour and mating success: V1aR expression was negatively correlated with satellite-directed aggression, and expression of its ligand arginine vasotocin (AVT) was positively correlated with courtship and mating success, thus revealing the potential for sexual selection on these mechanisms. ¬© 2018 John Wiley & Sons Ltd. Nugent Bridget M BM Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut. Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas. Stiver Kelly A KA 0000-0002-0650-8281 Department of Psychology, Southern Connecticut State University, New Haven, Connecticut. Hofmann Hans A HA 0000-0002-3335-330X Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas. Alonzo Suzanne H SH 0000-0001-7757-0528 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California. eng Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't 2019 02 06 England Mol Ecol 9214478 0962-1083 IM alternative reproductive tactics androgens neuroendocrine sexual selection social behaviour teleosts 2018 07 25 2018 11 17 2018 11 27 2018 12 27 6 0 2018 12 27 6 0 2018 12 27 6 0 ppublish 30586201 10.1111/mec.14999 REFERENCES, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Fish nursery value of algae habitats in temperate coastal reefs.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hinz H, Re√Īones O, Gouraguine A, Johnson AF, Moranta J<br><font color=gray><i>PeerJ, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Interbreeding between local and translocated populations of a cleaner fish in an experimental mesocosm predicts risk of disrupted local adaptation.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Blanco Gonzalez E, Espeland SH, Jentoft S, Hansen MM, Robalo JI, Stenseth NC, Jorde PE<br><font color=gray><i>Ecology and evolution, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an in situ study.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Di Franco A, Cal√≤ A, Sdiri K, Cattano C, Milazzo M, Guidetti P<br><font color=gray><i>Biology letters, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The richness of small pockets: Decapod species peak in small seagrass patches where fish predators are absent.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Boada J, Pag√®s JF, Gera A, Macpherson E, Santana Y, Romero J, Alcoverro T<br><font color=gray><i>Marine environmental research, 2018</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Intentional multiple mating by females in a species where sneak fertilization circumvents female choice for parental males.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Stiver KA, Kindsvater HK, Tamburello N, Heckman KL, Klein J, Alonzo SH<br><font color=gray><i>Journal of fish biology, 2018</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Symphodus&category=l&client=pubmed&startPage=2>¬Ľ</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>