Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 61 - 70 of about 875

Synonyms:
   Pseudogobius avicennia 
   Vaimosa avicennia 

Broader Terms:
   Perciformes (perch-likes) 
   Pseudogobius (snouted gobies) 
   Vaimosa 
 
 


External Resources:

Common Names: 大眼拟鰕虎鱼, 大眼擬鰕虎魚



61.  WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis.LinkIT
Krishnamurthy P, Vishal B, Bhal A, Kumar PP
Physiologia plantarumPhysiol PlantWRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis.1673-168710.1111/ppl.13371Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes. CYP94B3 and CYP86B1 transcripts were induced upon salt treatment in the roots of both A. officinalis and Arabidopsis. Both AoCYP94B3 and AoCYP86B1 were localized to the endoplasmic reticulum. Heterologous expression of 35S::AoCYP94B3 and 35S::AoCYP86B1 in their respective Arabidopsis mutants (atcyp94b3 and atcyp86b1) increased the salt tolerance of the transgenic seedlings by reducing the amount of Na+ accumulation in the shoots. Moreover, the reduced root suberin phenotype of atcyp94b3 was rescued in the 35S::AoCYP94B3;atcyp94b3 transgenic Arabidopsis seedlings. Gas-chromatography and mass spectrometry analyses showed that the amount of suberin monomers (C-16 ?-hydroxy acids, C-16 ?, ?-dicarboxylic acids and C-20 eicosanol) were increased in the roots of 35S::AoCYP94B3;atcyp94b3 Arabidopsis seedlings. Using chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified AtWRKY9 as the upstream regulator of AtCYP94B3 and AtCYP86B1 in Arabidopsis. In addition, atwrky9 showed suppressed expression of AtCYP94B3 and AtCYP86B1 transcripts, and reduced suberin in the roots. These results show that AtWRKY9 controls suberin deposition by regulating AtCYP94B3 and AtCYP86B1, leading to salt tolerance. Our data can be used for generating salt-tolerant crop plants in the future.© 2021 Scandinavian Plant Physiology Society.KrishnamurthyPannagaPDepartment of Biological Sciences, National University of Singapore, Singapore, Singapore.NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore.VishalBhushanBDepartment of Biological Sciences, National University of Singapore, Singapore, Singapore.School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.BhalAmritADepartment of Biological Sciences, National University of Singapore, Singapore, Singapore.KumarPrakash PPPhttps://orcid.org/0000-0002-0963-1664Department of Biological Sciences, National University of Singapore, Singapore, Singapore.NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore.engNational Water AgencyNational Research Foundation, SingaporeJournal Article20210312DenmarkPhysiol Plant12563220031-93170Arabidopsis Proteins0Lipids0Transcription Factors8072-95-5suberin9035-51-2Cytochrome P-450 Enzyme SystemEC 1.-CYP86B1 protein, ArabidopsisEC 1.-cytochrome P-450 94B3, ArabidopsisIMArabidopsisgeneticsmetabolismArabidopsis ProteinsgeneticsmetabolismCytochrome P-450 Enzyme SystemgeneticsmetabolismGene Expression Regulation, PlantLipidsPlant RootsgeneticsmetabolismPlants, Genetically ModifiedmetabolismSalt TolerancegeneticsTranscription Factors202101082020102720210212202122460202171602021223619ppublish3361974510.1111/ppl.13371REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>62.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Kinetic modelling of high turbid water flocculation using native and surface functionalized coagulants prepared from shed-leaves of Avicennia marina plants.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Naruka AK, Suganya S, Kumar PS, Amit C, Ankita K, Bhatt D, Kumar MA<br><font color=gray><i>Chemosphere, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>63.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>In vitro antioxidant, antibacterial, and antihyperlipidemic potential of ethanolic Avicennia marina leaves extract supported by metabolic profiling.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Yassien EE, Hamed MM, Abdelmohsen UR, Hassan HM, Gazwi HSS<br><font color=gray><i>Environmental science and pollution research international, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>64.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Westalsan: A New Acetylcholine Esterase Inhibitor from the Endophytic Fungus Westerdykella nigra.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Sallam A, Sabry MA, Galala AA<br><font color=gray><i>Chemistry & biodiversity, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>65.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Pennings SC, Glazner RM, Hughes ZJ, Kominoski JS, Armitage AR<br><font color=gray><i>EcologyEcologyEffects of mangrove cover on coastal erosion during a hurricane in Texas, USA.e0330910.1002/ecy.3309We tested the hypothesis that mangroves provide better coastal protection than salt marsh vegetation using 10 1,008-m2 plots in which we manipulated mangrove cover from 0 to 100%. Hurricane Harvey passed over the plots in 2017. Data from erosion stakes indicated up to 26 cm of vertical and 970 cm of horizontal erosion over 70 months in the plot with 0% mangrove cover, but relatively little erosion in other plots. The hurricane did not increase erosion, and erosion decreased after the hurricane passed. Data from drone images indicated 196 m2 of erosion in the 0% mangrove plot, relatively little erosion in other plots, and little ongoing erosion after the hurricane. Transects through the plots indicated that the levee (near the front of the plot) and the bank (the front edge of the plot) retreated up to 9 m as a continuous function of decreasing mangrove cover. Soil strength was greater in areas vegetated with mangroves than in areas vegetated by marsh plants, or nonvegetated areas, and increased as a function of plot-level mangrove cover. Mangroves prevented erosion better than marsh plants did, but this service was nonlinear, with low mangrove cover providing most of the benefits.© 2021 by the Ecological Society of America.PenningsSteven CSC0000-0003-4757-7125Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA.GlaznerRachael MRM0000-0003-1766-8990Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, 77553, USA.HughesZoe JZJ0000-0003-0702-3478Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA.Department of Earth Sciences, Boston University, Boston, Massachusetts, 02215, USA.KominoskiJohn SJS0000-0002-0978-3326Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA.ArmitageAnna RAR0000-0003-1563-8026Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, 77553, USA.engJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.20210313United StatesEcology00435410012-9658IMAvicenniaClimate ChangeCyclonic StormsTexasWetlandscoastal protectionerosionhurricanemangrovesalt marshsoil strength2020112420200630202102052021213602021427602021212614ppublish3357600210.1002/ecy.3309Literature Cited, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>66.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Xia S, Wang W, Song Z, Kuzyakov Y, Guo L, Van Zwieten L, Li Q, Hartley IP, Yang Y, Wang Y, Andrew Quine T, Liu C, Wang H<br><font color=gray><i>Global change biologyGlob Chang BiolSpartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics.1627-164410.1111/gcb.15516Coastal wetlands are among the most productive ecosystems and store large amounts of organic carbon (C)-the so termed "blue carbon." However, wetlands in the tropics and subtropics have been invaded by smooth cordgrass (Spartina alterniflora) affecting storage of blue C. To understand how S. alterniflora affects soil organic carbon (SOC) stocks, sources, stability, and their spatial distribution, we sampled soils along a 2500 km coastal transect encompassing tropical to subtropical climate zones. This included 216 samplings within three coastal wetland types: a marsh (Phragmites australis) and two mangroves (Kandelia candel and Avicennia marina). Using ?13 C, C:nitrogen (N) ratios, and lignin biomarker composition, we traced changes in the sources, stability, and storage of SOC in response to S. alterniflora invasion. The contribution of S. alterniflora-derived C up to 40 cm accounts for 5.6%, 23%, and 12% in the P. australis, K. candel, and A. marina communities, respectively, with a corresponding change in SOC storage of +3.5, -14, and -3.9 t C ha-1 . SOC storage did not follow the trend in aboveground biomass from the native to invasive species, or with vegetation types and invasion duration (7-15 years). SOC storage decreased with increasing mean annual precipitation (1000-1900 mm) and temperature (15.3-23.4?). Edaphic variables in P. australis marshes remained stable after S. alterniflora invasion, and hence, their effects on SOC content were absent. In mangrove wetlands, however, electrical conductivity, total N and phosphorus, pH, and active silicon were the main factors controlling SOC stocks. Mangrove wetlands were most strongly impacted by S. alterniflora invasion and efforts are needed to focus on restoring native vegetation. By understanding the mechanisms and consequences of invasion by S. alterniflora, changes in blue C sequestration can be predicted to optimize storage can be developed.© 2021 John Wiley & Sons Ltd.XiaShaopanS0000-0002-5069-3939Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China.Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China.WangWeiqiWKey Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China.SongZhaoliangZ0000-0002-2219-5852Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China.Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China.KuzyakovYakovYTianjin Key Laboratory of Water Resources and Environment, & School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China.Department of Soil Science of Temperate Ecosystems, University of Goettingen, Goettingen, Germany.Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany.Agro-Technological Institute, RUDN University, Moscow, Russia.GuoLaodongLSchool of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.Van ZwietenLukasLNSW Department of Primary Industries, Wollongbar, NSW, Australia.LiQiangQInstitute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China.Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China.HartleyIain PIPGeography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.YangYuanheY0000-0002-5399-4606State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.WangYidongYTianjin Key Laboratory of Water Resources and Environment, & School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China.Andrew QuineTimothyTCollege of Life and Environmental Sciences, University of Exeter, Exeter, UK.LiuCongqiangCInstitute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China.Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China.WangHailongHSchool of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China.School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, China.eng2016YFA0601002State's Key Project of Research and Development Plan of China2017YFC0212700State's Key Project of Research and Development Plan of China41930862National Natural Science Foundation of China41571130042National Natural Science Foundation of ChinaJournal Article20210128EnglandGlob Chang Biol98887461354-10130Soil7440-44-0CarbonIMCarbonanalysisChinaEcosystemIntroduced SpeciesPoaceaeSoilWetlandsSpartina alterniflorablue carboncoastal wetlandsexotic species invasionlignin biomarkersmangrove ecosystemssoil organic carbon storage?13C20201107202012242021113602021424602021112615ppublish3343269710.1111/gcb.15516REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>67.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Mangrove tree (Avicennia marina): insight into chloroplast genome evolutionary divergence and its comparison with related species from family Acanthaceae.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Asaf S, Khan AL, Numan M, Al-Harrasi A<br><font color=gray><i>Scientific reports, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>68.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Antibacterial and Antifungal Activity of the Extracts of Different Parts of <i>Avicennia marina</i> (Forssk.) Vierh.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Okla MK, Alatar AA, Al-Amri SS, Soufan WH, Ahmad A, Abdel-Maksoud MA<br><font color=gray><i>Plants (Basel, Switzerland), 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>69.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Friis G, Vizueta J, Smith EG, Nelson DR, Khraiwesh B, Qudeimat E, Salehi-Ashtiani K, Ortega A, Marshell A, Duarte CM, Burt JA<br><font color=gray><i>G3 (Bethesda, Md.), 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>70.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Antihyperglycemic, Antioxidant and Antiapoptotic Effect of Rhizophora Mucronata and Avicennia Marina in Streptozotocin-induced Diabetic Rats.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Al-Jaghthmi OHA, Zeid IEMEA, Al-Ghamdi KMS, Heba HM, Ahmad MS<br><font color=gray><i>Medical archives (Sarajevo, Bosnia and Herzegovina), 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=6><img src=p.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=1><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=11><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=12><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=13><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=14><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=15><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=16><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=8><img src=rtal.png border=0></a></td></tr><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=6>«</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=1>1</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=6>6</a></td><td align=center>7</td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=11>11</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=12>12</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=13>13</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=14>14</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=15>15</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=16>16</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Pseudogobius+avicennia&category=l&client=pubmed&startPage=8>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>