Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 71 - 80 of about 700740

Synonyms:
   Proteobacteria 

Broader Terms:
   Bacteria 
   Bacteria regnum 
   Eubacteria 
   Gram negative walls 
   Proteobacteria 

More Specific:
   Alpha proteobacteria 
   Alphaproteobacteria 
   Beta proteobacteria 
   Betaproteobacteria 
   Delta proteobacteria 
   Deltaproteobacteria 
   Epsilon proteobacteria 
   Epsilonproteobacteria 
   Gamma proteobacteria 
   Gammaproteobacteria 
   Missing 
   Proteobacteria alpha subdivision 
   Proteobacteria beta subdivision 
   Proteobacteria delta subdivision 
   Proteobacteria epsilon subdivision 
   Proteobacteria gamma subdivision 
   Proteobacteria str 
   Unassigned 
   delta/epsilon subdivisions 
   environmental samples 
   unclassified 
 
 
Latest Articles on Proteobacteria from uBioRSS


External Resources:

Common Names: purple bacteria and relatives, purple non-sulfur bacteria, Purple bacteria, purple photosynthetic bacteria, purple photosynthetic bacteria and relatives



71.  Spatial variation of the soil bacterial community in major apple producing regions of China.LinkIT
Chai X, Yang Y, Wang X, Hao P, Wang L, Wu T, Zhang X, Xu X, Han Z, Wang Y
Journal of applied microbiology J Appl Microbiol Spatial variation of the soil bacterial community in major apple producing regions of China. 10.1111/jam.14878 In China, apple production areas are largely from the coastal to inland areas and across varied climate zones. However, the relationship among soil micro-organisms, environmental factors and fruit quality has not been clearly confirmed in orchards. Here we attempted to identify the variation of soil bacteria in the main apple producing regions and reveal the relationship among climatic factor, soil properties, soil bacterial community and fruit quality. Sixty soil samples were collected from six main apple producing areas in China. We examined the soil bacteria using bacterial 16S rRNA gene amplicon profiling. The results show that the soil bacterial diversity of apple orchards varied from the Bohai Bay Region to the Loess Plateau Region. Proteobacteria, Acidobacteria and Actinobacteria were the predominant taxa at the phylum level for all six areas. In the Bohai Bay and the Loess Plateau region, which are the two largest apple producing areas, Proteobacteria and Actinobacteria had the highest relative abundance, respectively. Furthermore, soil bacterial diversity showed positive correlation with the mean annual temperature (MAT), soil organic matter (SOM) and pH. Excluding a direct effect on the apple fruit quality, MAT exerted an indirect influence through soil SOM and pH to alter the relative abundance of dominant taxa and shift the bacterial diversity, which affects the apple fruit titratable acids and soluble solids. Geographic variables underlie apple orchard soil bacterial communities vary according to spatial scale. Environmental factors exert an indirect effect on apple fruit quality via shaping soil bacterial community. This study provides a list of bacteria associated with environmental factors and the ecological attributes of their interactions in apple orchards, which will improve our ability to promote soil bacterial functional capabilities in order to reduce the fertilizer input and enhance the fruit quality. © 2020 The Society for Applied Microbiology. Chai X X https://orcid.org/0000-0001-5255-2040 College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Yang Y Y College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Wang X X College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Hao P P College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Wang L L College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Wu T T College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Zhang X X College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Xu X X College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Han Z Z College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. Wang Y Y https://orcid.org/0000-0002-6303-385X College of Horticulture, China Agricultural University, Beijing, P. R. China. Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China. eng CARS-27 the China Agriculture Research System CEFF-PXM2019_014207_000032 the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects 2016YFD0201103 the National Key Research and Development Program of China Journal Article 2020 10 04 England J Appl Microbiol 9706280 1364-5072 IM apple orchard climate factors high-throughput sequencing soil bacterial community soil properties 2020 07 12 2020 09 18 2020 09 26 2020 10 5 6 0 2020 10 5 6 0 2020 10 4 20 36 aheadofprint 33012070 10.1111/jam.14878 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>72.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Delivery mode-associated gut microbiota in the first 3 months of life in a country with high obesity rates: A descriptive study.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Murata C, Gutiérrez-Castrellón P, Pérez-Villatoro F, García-Torres I, Enríquez-Flores S, de la Mora-de la Mora I, Fernández-Lainez C, Werner J, López-Velázquez G<br><font color=gray><i>Medicine, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>73.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Metagenomics Reveal Correlations Between Microbial Organisms in Soils and the Health of <i>Populus euphratica</i>.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Tuo Y, Dong Z, Wang X, Gao B, Zhu C, Tuo F<br><font color=gray><i>Frontiers in microbiology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>74.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Seasonal shifts in the presence of pathogenic leptospires, Escherichia coli, and physicochemical properties in coastal rivers and streams of Puerto Rico.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Truitt ZG, Poon-Kwong B, Bachoon DS, Otero E<br><font color=gray><i>Journal of environmental quality J Environ Qual Seasonal shifts in the presence of pathogenic leptospires, Escherichia coli, and physicochemical properties in coastal rivers and streams of Puerto Rico. 1264-1272 10.1002/jeq2.20091 Leptospirosis is an emerging zoonotic disease in the Caribbean region and the island of Puerto Rico. Information on the presence of pathogenic Leptospira in rivers and streams of Puerto Rico is currently lacking. This study aimed to evaluate seasonal shifts in the presence of pathogenic leptospires and the level of Escherichia coli from 32 coastal locations in Puerto Rico's dry and wet seasons. Physicochemical parameters (temperature, salinity, pH, and dissolved oxygen) were determined at each site. The temperature (25.8 °C) and pH (average 7.6) values were all within acceptable USEPA regulatory standards. Thirty-eight percent of the sites of the dry season and 28% of the wet season sites contained dissolved oxygen levels ?4 mg L-1 , which is relatively low. In the dry season, 19 sites (59%) and 18 (56%) of the wet season sites had E. coli counts >410 most probable number (MPN) 100 ml-1 and would be considered unsafe for recreational use. The lipl32 gene quantitative polymerase chain reaction assay was used for the detection of pathogenic leptospires in the samples. Low concentrations of pathogenic leptospires (<60 genome copies 100 ml-1 ) at Camuy, Espíritu Santo, Río Guayanilla, Quebrada Majagual, and Río Fajardo were detected during the wet season. Pathogenic leptospires were detected (?40 genome copies 100 ml-1 ) at only one site, Loíza, during the dry season. There was no predictable relationship between the physicochemical parameters, concentrations of E. coli, and the presence of pathogenic leptospires in water samples. © 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Truitt Zamara G ZG Dep. of Biological and Environmental Sciences, Georgia College and State Univ., Milledgeville, GA, 31061, USA. Poon-Kwong B B Dep. of Biological and Environmental Sciences, Georgia College and State Univ., Milledgeville, GA, 31061, USA. Bachoon D S DS https://orcid.org/0000-0003-3548-7579 Dep. of Biological and Environmental Sciences, Georgia College and State Univ., Milledgeville, GA, 31061, USA. Otero E E Dep. of Marine Sciences, Univ. of Puerto Rico, Mayaguez Campus, P.O. Box 9013, Mayaguez, PR, 00681, USA. eng Georgia Power Endowment in Environmental Sciences Georgia Power Endowment Journal Article 2020 07 20 United States J Environ Qual 0330666 0047-2425 IM Escherichia coli Leptospira Puerto Rico Rivers Seasons 2020 01 10 2020 04 14 2020 05 05 2020 10 5 8 43 2020 10 6 6 0 2020 10 7 6 0 ppublish 33016462 10.1002/jeq2.20091 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>75.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Diversity and Bioactivity of Endophytes From <i>Angelica sinensis</i> in China.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Zhang XG, Guo SJ, Wang WN, Wei GX, Ma GY, Ma XD<br><font color=gray><i>Frontiers in microbiology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>76.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Transient Dynamics of Archaea and Bacteria in Sediments and Brine Across a Salinity Gradient in a Solar Saltern of Goa, India.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Mani K, Taib N, Hugoni M, Bronner G, Bragança JM, Debroas D<br><font color=gray><i>Frontiers in microbiology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>77.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Evaluating multiple predictive models for beach management at a freshwater beach in the Great Lakes region.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Madani M, Seth R<br><font color=gray><i>Journal of environmental quality J Environ Qual Evaluating multiple predictive models for beach management at a freshwater beach in the Great Lakes region. 896-908 10.1002/jeq2.20107 Recreational water quality is currently monitored at Sandpoint Beach on Lake St. Clair using culture-based enumeration of Escherichia coli. Using water quality and weather data collected over 4 yr, several multiple linear regression (MLR)-based models were developed for near real-time prediction of E. coli concentration and were tested using independent data from the fifth year. Model performance was assessed by the determination of metrics such as RMSE, accuracy, specificity, sensitivity, and area under the receiver operating characteristic curve (AUROC). Each of the developed MLR models described herein resulted in increased correct responses for both exceedance and non-exceedance of the applicable standard as compared to predictions based on E. coli measurements (persistence models, using the previous day's E. coli concentration), which is the method currently being used. The AUROC values for persistence models are between 0.5 and 0.6, as compared to >0.7 for all the MLR models described herein. Among the MLR models, model performance improved when qualitative sky weather condition, which is commonly reported but was not previously used in similar models, was included. To select the best model, a principal coordinate analysis was used to combine multiple model performance metrics and provide a more sensitive tool for model comparison. Although models developed using 2, 3, and 4 yr of monitoring data provided reasonable performance, the model developed using the most recent 2-yr data was marginally better. Thus, data from the most recent 2 yr are likely sufficient as a training dataset for updating the MLR model for Sandpoint Beach in the future. © 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Madani Mohammad M https://orcid.org/0000-0002-5847-8555 Dep. of Civil and Environmental Engineering, Univ. of Windsor, Windsor, ON, N9B3P4, Canada. Seth Rajesh R Dep. of Civil and Environmental Engineering, Univ. of Windsor, Windsor, ON, N9B3P4, Canada. eng Natural Sciences and Engineering Research Council of Canada Journal Article 2020 06 22 United States J Environ Qual 0330666 0047-2425 IM Bathing Beaches Environmental Monitoring Escherichia coli Great Lakes Region Water Quality 2020 02 07 2020 05 10 2020 05 14 2020 10 5 8 43 2020 10 6 6 0 2020 10 7 6 0 ppublish 33016491 10.1002/jeq2.20107 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>78.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Fluorine and white clover: Assessing fluorine's impact on Rhizobium leguminosarum.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Geretharan T, Jeyakumar P, Bretherton M, Anderson CWN<br><font color=gray><i>Journal of environmental quality J Environ Qual Fluorine and white clover: Assessing fluorine's impact on Rhizobium leguminosarum. 987-999 10.1002/jeq2.20089 The soil fluorine (F) concentration in New Zealand agricultural soils has increased with time as a direct result of the widespread application of phosphate fertilizer to land. Elevated soil F concentrations may potentially harm soil microorganisms, which are important for nutrient cycling and soil formation. Rhizobium leguminosarum is a N2 -fixing soil bacterium that is a fundamental component in New Zealand legume-based pastoral farming. Any impact of F on Rhizobium leguminosarum would have an adverse effect on New Zealand pasture production. In this study, F toxicity to Rhizobium leguminosarum was examined as a first step to develop F guideline values for New Zealand agricultural soils. Bottle-based experiments were conducted to examine the effect of the F- ion on Rhizobium-white clover (Trifolium repens L.) symbiosis by observing nodule morphology and growth. Results indicate that the F- concentration that causes 10% inhibition of Rhizobium respiration (IC10 ) for F- toxicity to Rhizobium leguminosarum was >100 mg F-  L-1 . Significant morphological changes occurred when Rhizobium was exposed to F concentrations of 500 and 1000 mg L-1 . Both light and transmission electron micrographs confirmed that the Rhizobium leguminosarum-white clover interaction was not influenced by F- concentrations >100 mg L-1 . The toxic F- concentration for Rhizobium leguminosarum determined in this study is orders of magnitude higher than the F- concentration in New Zealand agriculture soils under "normal conditions." There appears to be no indication of imminent risk of soil F to Rhizobium leguminosarum. © 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Geretharan Thangavelautham T Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. Dep. of Crop Science, Faculty of Agriculture, Eastern Univ., Vantharumoolai, Chenkalady, 30350, Sri Lanka. Jeyakumar Paramsothy P https://orcid.org/0000-0002-9841-8645 Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. Bretherton Michael M Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. Anderson Christopher W N CWN https://orcid.org/0000-0003-0935-1475 Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. eng Fertiliser Association of New Zealand Journal Article 2020 06 11 United States J Environ Qual 0330666 0047-2425 284SYP0193 Fluorine IM Fluorine New Zealand Rhizobium leguminosarum Symbiosis Trifolium 2019 08 29 2020 04 05 2020 04 16 2020 10 5 8 43 2020 10 6 6 0 2020 10 7 6 0 ppublish 33016489 10.1002/jeq2.20089 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>79.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Bucher MG, Zwirzitz B, Oladeinde A, Cook K, Plymel C, Zock G, Lakin S, Aggrey SE, Ritz C, Looft T, Lipp E, Agga GE, Abdo Z, Sistani KR<br><font color=gray><i>Journal of environmental quality J Environ Qual Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg. 869-881 10.1002/jeq2.20081 The success of poultry litter reuse in U.S. poultry production can be attributed to the efficient treatment methods used by producers during downtimes (the time lapse between consecutive flocks, during which the broiler house is empty). During this period, reused litter may be decaked, tilled/windrowed, or treated with acid-based amendments to reduce ammonia and bacteria levels. Competitive exclusion, pH, and temperature are proposed factors that influence the level of pathogens and the overall litter microbiome during downtimes. We previously reported on the bacterial genetic factors associated with the fitness of two strains of Salmonella enterica serovar Heidelberg (SH) incubated for 14 d in reused litter. Here, we investigated the physicochemical parameters and the microbiome of the litter correlating with SH abundance during this period. We used 16S ribosomal RNA gene sequencing to determine the litter microbiome and whole genome sequencing to characterize bacteria with competitive exclusion potential against SH. The ? diversity of the litter microbiome was significantly affected by the duration of incubation, microcosm, and microcosm plus Heidelberg strain combinations. In addition, ? diversity was significantly affected by litter parameters, including NH4 , pH, moisture, water activity, and aluminum. The major phyla observed in the reused litter throughout the 14-d incubation experiment were Firmicutes and Actinobacteria, although their abundance differed by microcosm and time. Amplicon-specific variants homologous to the members of the genera Nocardiopsis and Lentibacillus and the family Bacillaceae_2 were found to significantly correlate with the abundance of Salmonella. A consortium of Bacillus subtilis strains isolated from the litter microcosms reduced the growth of SH in vitro. © 2020 The Authors. Journal of Environmental Quality published by Wiley Periodicals LLC on behalf of American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Bucher Maite Ghazaleh MG https://orcid.org/0000-0002-0616-8002 Environmental Health Sciences Dep., Univ. of Georgia, Athens, GA, 30602, USA. Zwirzitz Benjamin B https://orcid.org/0000-0002-1550-3511 Institute of Food Safety, Food Technology and Veterinary Public Health, Univ. of Veterinary Medicine, Vienna, 1210, Austria. Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, 3430, Austria. Oladeinde Adelumola A https://orcid.org/0000-0002-8659-7068 USDA-ARS, U.S. National Poultry Research Center, Athens, GA, USA. Cook Kimberly K USDA-ARS, U.S. National Poultry Research Center, Athens, GA, USA. Plymel Caroline C Environmental Health Sciences Dep., Univ. of Georgia, Athens, GA, 30602, USA. Zock Gregory G USDA-ARS, U.S. National Poultry Research Center, Athens, GA, USA. Lakin Steven S Dep. of Microbiology, Immunology and Pathology, Colorado State Univ., Fort Collins, CO, 80523, USA. Aggrey Samuel E SE Dep. of Poultry Science, Univ. of Georgia, Athens, GA, 30602, USA. Ritz Casey C Dep. of Poultry Science, Univ. of Georgia, Athens, GA, 30602, USA. Looft Torey T USDA-ARS, National Animal Disease Center, Ames, IA, 50010, USA. Lipp Erin E Environmental Health Sciences Dep., Univ. of Georgia, Athens, GA, 30602, USA. Agga Getahun E GE https://orcid.org/0000-0002-9903-5283 USDA-ARS, Food Animal Environmental Systems Research, Bowling Green, KY, 42101, USA. Abdo Zaid Z Dep. of Microbiology, Immunology and Pathology, Colorado State Univ., Fort Collins, CO, 80523, USA. Sistani Karamat R KR USDA-ARS, Food Animal Environmental Systems Research, Bowling Green, KY, 42101, USA. eng 6040-32000-010-00-D USDA Agricultural Research Service The competence center (FFoQSI) 270NSFGRFP National Science Foundation Graduate Research Fellowship Journal Article 2020 05 28 United States J Environ Qual 0330666 0047-2425 IM Animals Chickens Housing, Animal Microbiota Poultry Salmonella Salmonella enterica 2019 11 14 2020 03 20 2020 04 03 2020 10 5 8 43 2020 10 6 6 0 2020 10 7 6 0 ppublish 33016484 10.1002/jeq2.20081 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>80.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A preliminary investigation of wild pig (Sus scrofa) impacts in water quality.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Brooks JP, Smith RK, Aldridge CA, Chaney B, Omer A, Dentinger J, Street GM, Baker BH<br><font color=gray><i>Journal of environmental quality J Environ Qual A preliminary investigation of wild pig (Sus scrofa) impacts in water quality. 27-37 10.1002/jeq2.20036 The United States, particularly the southern portion, has recently suffered drastic population expansion of wild pigs causing destruction of prime farmland. An associated concern, which has been understudied, is the potential transfer of nutrients and pathogens to surface water. This study aimed to identify the abiotic and biotic impacts of captive wild pigs on water quality, including nutrients, fecal indicator and pathogenic bacteria, and antimicrobial resistance. Overall, the study demonstrated that wild pigs harbored Salmonella spp., Campylobacter spp., Escherichia coli, and Clostridium perfringens, which were found in water runoff collected directly beneath the hog paddock, often 2 log10 greater than above-paddock levels. However, the impacts to downstream water quality were limited, perhaps because of a relatively large riparian buffer between the paddock and surface water. A higher rate of ammonium concentration changes over time was detected in the runoff water below the paddock; additionally, microbial releases detected in runoff were also time dependent, possibly associated with increasing pig numbers. Antibiotic resistance was generally not associated with the wild pigs. Antibiotic resistance genes were found in upstream as well as downstream surface water, suggesting that nonpoint sources of microbial contamination were present. Interestingly, intI1 levels were greater in below-paddock runoff by nearly 2 log10 . Overall, it appears that wild pigs potentially pose a threat to water quality but only if they have direct access to the water. Pathogen, fecal indicator bacteria, and some nutrient release were significantly associated with wild pigs, but riparian buffers limited water quality impairment. © 2019 The Authors. Journal of Environmental Quality © 2019 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Brooks John P JP https://orcid.org/0000-0002-6142-6430 USDA-ARS, Genetics and Sustainable Agriculture Unit, 810 HWY 12 E., Mississippi State, MS, 39762-5367, USA. Smith Renotta K RK USDA-ARS, Genetics and Sustainable Agriculture Unit, 810 HWY 12 E., Mississippi State, MS, 39762-5367, USA. Aldridge Caleb A CA Dep. of Wildlife, Fisheries and Aquaculture, Mississippi State Univ., 775 Stone Blvd., Mississippi State, MS, 39762-9690, USA. Chaney Brent B Dep. of Forestry, Mississippi State Univ., 775 Stone Blvd., Mississippi State, MS, 39762-9690, USA. Omer Austin A Dep. of Wildlife, Fisheries and Aquaculture, Mississippi State Univ., 775 Stone Blvd., Mississippi State, MS, 39762-9690, USA. Dentinger Jane J Dep. of Wildlife, Fisheries and Aquaculture, Mississippi State Univ., 775 Stone Blvd., Mississippi State, MS, 39762-9690, USA. Street Garrett M GM https://orcid.org/0000-0002-1260-9214 Dep. of Wildlife, Fisheries and Aquaculture, Mississippi State Univ., 775 Stone Blvd., Mississippi State, MS, 39762-9690, USA. Baker Beth H BH https://orcid.org/0000-0002-8128-8039 Dep. of Wildlife, Fisheries and Aquaculture, Mississippi State Univ., 775 Stone Blvd., Mississippi State, MS, 39762-9690, USA. eng Mississippi Agricultural and Forestry Experiment Station Journal Article 2020 02 11 United States J Environ Qual 0330666 0047-2425 0 Anti-Bacterial Agents IM Animals Anti-Bacterial Agents Bacteria Escherichia coli Feces Swine United States Water Quality 2019 07 22 2019 09 29 2020 10 5 8 42 2020 10 6 6 0 2020 10 7 6 0 ppublish 33016358 10.1002/jeq2.20036 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=7><img src=p.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=1><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=11><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=12><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=13><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=14><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=15><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=16><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=17><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=9><img src=rtal.png border=0></a></td></tr><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=7>«</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=1>1</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=7>7</a></td><td align=center>8</td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=11>11</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=12>12</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=13>13</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=14>14</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=15>15</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=16>16</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=17>17</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Proteobacteria&category=l&client=pubmed&startPage=9>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>