Synonyms: Oncidium carthaginense (Coot Bay dancing-lady orchid)
Broader Terms: Oncidium (dancing-lady orchid) Orchidales
More Specific: Oncidium carthaginense andreanum Oncidium carthaginense klotzschii Oncidium carthaginense oerstedii Oncidium carthaginense sanguineum Oncidium carthaginense swartzii  |
| |
External Resources:
| Common Names: Coot Bay dancing-lady orchid
 101. Phylogenetic relationships amongst the African genera of subtribe Orchidinae s.l. (Orchidaceae; Orchideae): Implications for subtribal and generic delimitations.
Ngugi G, Le Péchon T, Martos F, Pailler T, Bellstedt DU, Bytebier B Molecular phylogenetics and evolution, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
102. Orchid epiphytes do not receive organic substances from living trees through fungi.
Eskov AK, Voronina EY, Tedersoo L, Tiunov AV, Manh V, Prilepsky NG, Antipina VA, Elumeeva TG, Abakumov EV, Onipchenko VG Mycorrhiza, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
103. Transcriptome sequencing and metabolite profiling analyses provide comprehensive insight into molecular mechanisms of flower development in Dendrobium officinale (Orchidaceae).
He C, Liu X, Teixeira da Silva JA, Liu N, Zhang M, Duan J Plant molecular biology, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
104. Soil P reduces mycorrhizal colonization while favors fungal pathogens: observational and experimental evidence in Bipinnula (Orchidaceae).
Mujica MI, Pérez MF, Jakalski M, Martos F, Selosse MA FEMS microbiology ecology, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
105. Immune modulatory effect of a novel 4,5-dihydroxy-3,3´,4´-trimethoxybibenzyl from Dendrobium lindleyi.
Khoonrit P, Mirdogan A, Dehlinger A, Mekboonsonglarp W, Likhitwitayawuid K, Priller J, Böttcher C, Sritularak B PloS one, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
106. Proteomic and Transcriptomic Analyses Indicate Metabolic Changes and Reduced Defense Responses in Mycorrhizal Roots of Oeceoclades maculata (Orchidaceae) Collected in Nature.
Valadares RBS, Perotto S, Lucheta AR, Santos EC, Oliveira RM, Lambais MR Journal of fungi (Basel, Switzerland), 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
107. Automated conservation assessment of the orchid family with deep learning.
Zizka A, Silvestro D, Vitt P, Knight TM Conservation biology : the journal of the Society for Conservation Biology Conserv Biol Automated conservation assessment of the orchid family with deep learning. 10.1111/cobi.13616 International Union for Conservation of Nature (IUCN) Red List assessments are essential for prioritizing conservation needs but are resource intensive and therefore available only for a fraction of global species richness. Automated conservation assessments based on digitally available geographic occurrence records can be a rapid alternative, but it is unclear how reliable these assessments are. We conducted automated conservation assessments for 13,910 species (47.3% of the known species in the family) of the diverse and globally distributed orchid family (Orchidaceae), for which most species (13,049) were previously unassessed by IUCN. We used a novel method based on a deep neural network (IUC-NN). We identified 4,342 orchid species (31.2% of the evaluated species) as possibly threatened with extinction (equivalent to IUCN categories critically endangered [CR], endangered [EN], or vulnerable [VU]) and Madagascar, East Africa, Southeast Asia, and several oceanic islands as priority areas for orchid conservation. Orchidaceae provided a model with which to test the sensitivity of automated assessment methods to problems with data availability, data quality, and geographic sampling bias. The IUC-NN identified possibly threatened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias relative to the IUCN Red List and was robust even when data availability was low and there were geographic errors in the input data. Overall, our results demonstrate that automated assessments have an important role to play in identifying species at the greatest risk of extinction. © 2020 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. Zizka Alexander A https://orcid.org/0000-0002-1680-9192 German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany. Naturalis Biodiversity Centre, P.O. Box 9517, Leiden, 2300RA, the Netherlands. Silvestro Daniele D https://orcid.org/0000-0003-0100-0961 Department of Biology, University of Fribourg, 1700 Fribourg, Ch. de Musee 10, Switzerland. Gothenburg Global Biodiversity Center, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden. Vitt Pati P https://orcid.org/0000-0002-3727-9178 German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany. Plant Biology and Conservation, Northwestern University, Evanston, IL, 60208, U.S.A. Knight Tiffany M TM https://orcid.org/0000-0003-0318-1567 German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany. Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany. Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, 06120, Halle (Saale), Germany. eng FZT 118 Deutsche Forschungsgemeinschaft FN-1749 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung PCEFP3_187012 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 2019-04739 Vetenskapsrådet Journal Article 2020 08 25 United States Conserv Biol 9882301 0888-8892 IM Evaluación Automatizada de la Conservación de la Familia Orchidaceae mediante Aprendizaje Profundo Resumen Los análisis de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) son esenciales para la priorización de las necesidades de conservación, pero requieren de muchos recursos y por lo tanto están disponibles sólo para una fracción de la riqueza mundial de especies. Las evaluaciones automatizadas de la conservación basadas en los registros disponibles de presencia geográfica pueden ser una alternativa rápida pero no está claro cuán confiables son estas evaluaciones. Realizamos evaluaciones automatizadas de la conservación para 13,910 especies (47.3% de las especies conocidas de la familia) de la diversa y mundialmente distribuida familia de las orquídeas (Orchidaceae), en la cual la mayoría de las especies (13,049) no tenían una valoración previa por parte de la UICN. Usamos un método novedoso basado en una red neural profunda (IUC-NN). Identificamos 4,342 especies de orquídeas (31.2% de las especies evaluadas) como posiblemente amenazadas por la extinción (equivalente a las categorías de la UICN en peligro crítico [CR], en peligro [EN] o vulnerable [VU]) y a Madagascar, África Occidental, el sudeste de Asia y varias islas oceánicas como áreas prioritarias para la conservación de orquídeas. La familia Orchidaceae proporcionó un modelo con el cual probar la sensibilidad de los métodos de evaluación automatizada ante problemas con la disponibilidad de datos, la calidad de los datos y los sesgos de muestreo geográfico. La IUC-NN identificó posibles especies amenazadas con una certeza de 84.3% con un sesgo de evaluación geográfica significativamente más bajo en relación con la Lista Roja de la UICN y mostró solidez incluso cuando la disponibilidad de datos fue baja y hubo errores geográficos en los datos de entrada. En general, nuestros resultados demostraron que las evaluaciones automatizadas tienen un papel importante que desempeñar en la identificación de especies con mayor riesgo de extinción. IUC-NN IUCN Red List Lista Roja UICN Orchidaceae aprendizaje mecánico biodiversidad biodiversity calidad de datos data quality machine learning sampling bias sesgo de muestreo 2020 06 11 2020 08 14 2020 08 17 2020 8 26 6 0 2020 8 26 6 0 2020 8 26 6 0 aheadofprint 32841461 10.1111/cobi.13616 Literature Cited, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
108. Symbiotic and Asymbiotic Germination of Dendrobium officinale (Orchidaceae) Respond Differently to Exogenous Gibberellins.
Chen J, Yan B, Tang Y, Xing Y, Li Y, Zhou D, Guo S International journal of molecular sciences, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
109. Genome-Wide Identification of YABBY Genes in Orchidaceae and Their Expression Patterns in Phalaenopsis Orchid.
Chen YY, Hsiao YY, Chang SB, Zhang D, Lan SR, Liu ZJ, Tsai WC Genes, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
110. Correlated evolution of leaf and root anatomic traits in Dendrobium (Orchidaceae).
Qi Y, Huang JL, Zhang SB AoB PLANTS, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
|
|