Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 3730

Synonyms:
   Oncidium carthaginense (Coot Bay dancing-lady orchid) 

Broader Terms:
   Oncidium (Dancing ladies) 
   Orchidales 

More Specific:
   Oncidium carthaginense andreanum 
   Oncidium carthaginense klotzschii 
   Oncidium carthaginense oerstedii 
   Oncidium carthaginense sanguineum 
   Oncidium carthaginense swartzii 
 
 


External Resources:

Common Names: Coot Bay dancing-lady orchid



1.  A comparative study on the reproductive success of two rewarding Habenaria species (Orchidaceae) occurring in roadside verge habitats.LinkIT
Zhang W, Gao J
BMC plant biology, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Partial and full mycoheterotrophy in green and albino phenotypes of the slipper orchid Cypripedium debile.LinkIT
Suetsugu K, Yamato M, Matsubayashi J, Tayasu I
Mycorrhiza, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Review of Natural Resources With Vasodilation: Traditional Medicinal Plants, Natural Products, and Their Mechanism and Clinical Efficacy.LinkIT
Tang F, Yan HL, Wang LX, Xu JF, Peng C, Ao H, Tan YZ
Frontiers in pharmacology, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Illumina Sequencing Reveals Conserved and Novel MicroRNAs of Dendrobium nobile Protocorm Involved in Synthesizing Dendrobine, a Potential Nanodrug.LinkIT
Qian X, Zhu J, Yuan Q, Jia Q, Jin H, Han J, Sarsaiya S, Jin L, Chen J, Guo L
Journal of biomedical nanotechnology, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  Mycorrhizal diversity in photosynthetic terrestrial orchids.LinkIT
McCormick MK, Whigham DF, O'Neill J
The New phytologist New Phytol Mycorrhizal diversity in photosynthetic terrestrial orchids. 425-438 10.1111/j.1469-8137.2004.01114.x ?? Specific orchid-fungal associations are known for nonphotosynthetic orchids but fungal diversity in photosynthetic orchids is thought to be quite broad. Specific fungal associations will figure prominently in conservation efforts, while diverse associations may require less attention. We combined culture techniques with ITS and mtLSU sequences and phylogenetic analysis to determine the genetic diversity of mycorrhizal fungi associated with an evergreen, a spring-green, and a winter-green orchid and compared this diversity with that published for a nonphotosynthetic orchid. ?? Mycorrhizal diversity in two of the three photosynthetic orchids was lower than for the nonphotosynthetic orchid. Mycorrhizal diversity in protocorms of the third species was also equal to, or less than, the fungal diversity associated with the nonphotosynthetic species, but adult fungal diversity was greater. ?? We found that photosynthetic orchids do not necessarily have more diverse mycorrhizal associations than nonphotosynthetic orchids. Similarly, evergreen orchids do not necessarily have greater mycorrhizal diversity than seasonally green orchids. Thus, orchid mycorrhizal diversity may not be determined by adult photosynthetic capacity. McCormick M K MK Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, MD 21037, USA. Whigham D F DF Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, MD 21037, USA. O'Neill J J Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, MD 21037, USA. eng Journal Article England New Phytol 9882884 0028-646X IM Cephalanthera austinae Goodyera pubescens Liparis lilifolia Orchidaceae Tipularia discolor mycorrhizal diversity 2021 4 20 1 3 2004 8 1 0 0 2004 8 1 0 1 ppublish 33873625 10.1111/j.1469-8137.2004.01114.x References, 2004</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Endopolyploidy in Vanda Miss Joaquim (Orchidaceae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Lim WL, Loh CS<br><font color=gray><i>The New phytologist New Phytol Endopolyploidy in Vanda Miss Joaquim (Orchidaceae). 279-287 10.1046/j.1469-8137.2003.00797.x ?? Occurrence of endopolyploidy in somatic tissues of the hybrid orchid Vanda Miss Joaquim (Vanda hookeriana × Vanda teres) was investigated with respect to tissue type and developmental stage. Effects of naphthaleneacetic acid (NAA) and gibberellic acid (GA3 ) on endopolyploidy during embryo development were also studied. ?? For the study of endopolyploidy, flow cytometric analysis was employed to determine nuclear DNA content of cells of somatic tissues. ?? Multiploid cells were observed in leaves, roots and column, but not in shoot apex, stem, perianth and pedicel. Furthermore, differential distribution of multiploid cells was found among different parts of leaves and roots. The degree of endopolyploidy in embryos increased with development. NAA was shown to induce endoreduplication in germinating embryos to a much larger extent than GA3 . ?? The pattern of endopolyploidy was characteristic of tissue type and developmental stage. The implications of endopolyploidy during differentiation and development, as well as the relevance of endopolyploidy to somaclonal variation, are discussed. Lim Wan Li WL Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543. Loh Chiang Shiong CS Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543. eng Journal Article England New Phytol 9882884 0028-646X IM GA3 (gibberellic acid) NAA (naphthalene acetic acid) Vanda Miss Joaquim endopolyploidy endoreduplication flow cytometry orchid 2021 4 20 1 4 2003 7 1 0 0 2003 7 1 0 1 ppublish 33873684 10.1046/j.1469-8137.2003.00797.x References, 2003</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Rasmussen HN, Whigham DF<br><font color=gray><i>The New phytologist New Phytol Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. 797-807 10.1046/j.1469-8137.2002.00422.x ??The mycorrhiza of orchids represents an energy source that may replace or supplement photosynthesis. Dependency on mycotrophy in adult life stages would thus be expected to be inversely related to the prevalence of phototrophic structures. ??The phenology of underground parts and mycorrhizal infection were monitored in five terrestrial species differing in leaf phenology (and thus in phototrophic strategy): Goodyera pubescens (evergreen), Tipularia discolor (wintergreen), Galearis spectabilis and Liparis lilifolia (summergreen) and Corallorhiza odontorhiza (chlorophyll deficient), growing sympatrically in a North American deciduous forest. ??Mycorrhizal infection was extensive in T. discolor roots and C. odontorhiza rhizomes. Only the proximal part of roots was infected in G. pubescens, and mycorrhizal colonisation was patchy in roots and tubers of G. spectabilis and localized in the rhizome in L. lilifolia. Mycotrophic roots were long-lived (1.5-3 yrs) determinate structures and mycorrhizal infection reached maximum intensity 2-6 months after development. Mycotrophy appeared to be active all year round in mature organs. ??The phenology of mycotrophic roots and patterns of mycorrhizal infection were not related to the leafy season. The hypothesis that phototrophic and mycotrophic nutrition alternate through the seasons could not be confirmed. Rasmussen Hanne N HN Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA. Present address, Danish Forest and Landscape Research Institute, Hørsholm Kongevej 11, DK-2970 Hørsholm, Denmark. Whigham Dennis F DF Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA. eng Journal Article England New Phytol 9882884 0028-646X IM Corallorhiza Galearis Goodyera Liparis Orchidaceae Tipularia heterotrophy mycotrophy terrestrial orchids 2021 4 20 1 3 2002 6 1 0 0 2002 6 1 0 1 ppublish 33873451 10.1046/j.1469-8137.2002.00422.x References, 2002</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Masuhara G, Katsuya K<br><font color=gray><i>The New phytologist New Phytol In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames, var. amoena (M. Bieberstein) Hara (Orchidaceae). 711-718 10.1111/j.1469-8137.1994.tb02974.x The relationships between the orchid Spiranthes sinensis (Persoon) Ames. var. amoena (M. Bieberstein) Hara and Rhizoctonia spp. were investigated in situ at germination and in adult plants, Seeds of the orchid placed in cotton gauze were buried at 210 sampling points in turf grassland, the orchid habitat (in situ germination). Eight weeks later, protocorm development of the orchid was confirmed at 67 of the 210 sampling points. Isolation of fungi from protocorms showed that in situ germination was induced mainly by Rhizoctonia rapens Bernard. Similarly, R. repens was the dominant mycorrhizal fungus isolated from roots of adult plants. The number of adult plants within a radius of either 30 or 50 cm of burial points did not influence seed germination. The distribution of Rhizoctonia spp. other than R. repens in the sample site was examined with a baiting method using buckwheat stems. Thirty-two isolates consisting of binucleate Rhizoctonia anastomosis group (AG)-A, AG-B, AG-G, and AG-1, R. solani Kuhn AG-4, Waitea circinata Warcup & Talbot, which anastomozed with WAG-O and WAG-Z, and a multinucteate Rhizoctonia sp. were isolated. Three AG-G isolates were obtained from the points at which protocorm development was induced by R. repens. Seeds of S. sinensis var. amoena were inoculated in vitro with these isolates to test for symbiotic germination. Most Rhizoctonia spp, not associated with the germination in situ induced seed germination in vitro. Seedlings which developed with these isolates in vitro were transferred to ex vitro conditions. New leaves developed and elongated as seedlings continued to grow for 3 months, The seed burial method enabled the clarification of the differences in orchid-fungal specificity in situ and in vitro. We concluded that the specificity between S. sinensis var. amoena and fungi in situ conditions was different to that in vitro. Masuhara Gaku G Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. Katsuya Keizo K Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. eng Journal Article England New Phytol 9882884 0028-646X IM Rhizoctonia Specificity Spiranthes in situ germination orchid mycorrhiza 2021 4 20 1 7 1994 8 1 0 0 1994 8 1 0 1 ppublish 33874389 10.1111/j.1469-8137.1994.tb02974.x REFERENCES, 1994</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The mycorrhizal relationship of multinucleate rhizoctonias from non-orchids with Microtis (Orchidaceae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Milligan MJ, Williams PG<br><font color=gray><i>The New phytologist New Phytol The mycorrhizal relationship of multinucleate rhizoctonias from non-orchids with Microtis (Orchidaceae). 205-209 10.1111/j.1469-8137.1988.tb03697.x Multinucleate rhizoctonias isolated from the roots of non-orchid plants were used in symbiotic germination tests with seed of 18 orchid species from 10 genera. The rhizoctonias only stimulated germination of Microtis. Investigation of the natural mycosymbionts of adult Microtis failed to yield fungi similar to the original multinucleate rhizoctonias: 27 Microtis plants collected at seven sites in the Sydney region yielded 26 binucleate rhizoctonias tentatively identified as Tulasnella calospora (Boudier) Juel and one very slow growing multinucleate rhizoctonia tentatively identified as Sebacina vermifera Oberwinkler. Fungi closely resembling the original multinucleate rhizoctonias were isolated by baiting the soil with subterranean clover (Trifolium subterraneum L.) plants at three of the seven Microtis sites. Milligan M J MJ School of Botany, University of New South Wales, P.O. Box 1, Kensington 2033, N.S.W., Australia. Williams P G PG School of Botany, University of New South Wales, P.O. Box 1, Kensington 2033, N.S.W., Australia. eng Journal Article England New Phytol 9882884 0028-646X IM Key words: Orchid mycorrhiza, Mirotis, Sebacina vermifera, symbiotic germination tests 2021 4 20 1 6 1988 2 1 0 0 1988 2 1 0 1 ppublish 33874169 10.1111/j.1469-8137.1988.tb03697.x References, 1988</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>COATED VESICLES IN THE CYTOPLASM OF THE HOST CELLS IN OPHRYS LUTEA CAV. MYCORRHIZAS (ORCHIDACEAE).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Barroso J, Pais MSS<br><font color=gray><i>The New phytologist New Phytol COATED VESICLES IN THE CYTOPLASM OF THE HOST CELLS IN OPHRYS LUTEA CAV. MYCORRHIZAS (ORCHIDACEAE). 67-70 10.1111/j.1469-8137.1987.tb00110.x The host cells from endomycorrhizas of Ophrys lutea Cav. contain many coated vesicles associated with dictyosomes, with a membrane system (probably partially coated reticulum) and with the host's sequestration plasmalemma. The contents of coated vesicles stain with neither the PATAg test for polysaccharides nor with ruthenium red. The involvement of coated vesicles in the host/endophyte interactions during the establishment of O. lutea endomycorrhizas is discussed. Barroso J J Departamento de Biologia Vegetal-Faculdade de Ciências de Lisboa, 1294 Lisboa Codex, Portugal. Pais M Salomé S MSS Departamento de Biologia Vegetal-Faculdade de Ciências de Lisboa, 1294 Lisboa Codex, Portugal. eng Journal Article England New Phytol 9882884 0028-646X IM Coated vesicles Ophrys lutea mycorrhiza 2021 4 20 1 6 1987 1 1 0 0 1987 1 1 0 1 ppublish 33874035 10.1111/j.1469-8137.1987.tb00110.x References, 1987</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Oncidium+carthaginense&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>