Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 819

Synonyms:
   Acentrogobius belissimus 
   Exyrias belissimus (Mud-reef goby) 
   Exyrias bellissimus 
   Exyrius belissimus 

Broader Terms:
   Acentrogobius (checkered gobies) 
   Exyrias (fantail gobies) 
   Mud-reef 
   Perciformes (perch-likes) 
 
 




1.  Gobioecetes longibasais n. sp. (Monogenea: Dactylogyridae) from Rhinogobius similis Gill (Perciformes: Gobiidae) from Okinawa-jima Island, the Ryukyu Archipelago, southern Japan, with a new host record for Gobioecetes biwaensis Ogawa & Itoh, 2017.LinkIT
Nitta M, Nagasawa K
Systematic parasitology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature.LinkIT
da Silva CR, van den Berg CP, Condon ND, Riginos C, Wilson RS, Cheney KL
The Journal of animal ecology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Functional characterization of fatty acyl desaturase Fads2 and Elovl5 elongase in the Boddart's goggle-eyed goby, Boleophthalmus boddarti (Gobiidae) suggest an incapacity for long-chain polyunsaturated fatty acid biosynthesis.LinkIT
Soo HJ, Kei SK, Chong J, Sean LN, Ting SY, Kuah MK, Kwang SY, Janaranjani M, Shu-Chien AC
Journal of fish biology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Ecosystem size predicts the probability of speciation in migratory freshwater fish.LinkIT
Yamasaki YY, Takeshima H, Kano Y, Oseko N, Suzuki T, Nishida M, Watanabe K
Molecular ecology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  Seasonal variation of sexually dimorphic spatial learning implicates mating system in the intertidal Cocos Frillgoby (Bathygobius cocosensis).LinkIT
Carbia PS, Brown C
Animal cognition, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

6.  Selective induced apoptosis and cell cycle arrest in MCF7 and LNCap cell lines by skin mucus from round goby (Neogobius melanostomus) and common carp (Cyprinus carpio) through P53 expression.LinkIT
Alijani Ardeshir R, Rastgar S, Morakabati P, Mojiri-Forushani H, Movahedinia A, Salati AP
Cytotechnology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

7.  Feasibility of spectral pH measurement during the low-pH virus inactivation step of continuous therapeutic antibody production.LinkIT
Goby JD, Furuya K, Zimmermann E, Beller JA, Schmitt JM, Cortese M, Breit JF, Coffman JL
Biotechnology progress Biotechnol. Prog. Feasibility of spectral pH measurement during the low-pH virus inactivation step of continuous therapeutic antibody production. e2988 10.1002/btpr.2988 Acidic virus inactivation is commonly used during production of biotherapeutic products to provide virus safety in case of undetected virus contamination. Accurate pH measurement is required to ensure the product pH reaches a virus-inactivating level (typically 3.5-3.7), and a level post-inactivation that is appropriate for later purification steps (typically 5.5-7.5). During batch low-pH inactivation in discrete tanks, potentiometric glass probes are appropriate for measuring pH. During continuous inactivation for 2-3?weeks in an enclosed product stream, probe calibration drift and lag may lead to poor accuracy, and operational difficulties when compensating for drift. Monitoring the spectral response of compounds (indicators) in the product stream whose spectra are pH-sensitive offers a possible alternative way to measure pH without these drawbacks. Such indicators can already exist in the stream (intrinsic) or can be added (extrinsic). Herein are reported studies evaluating the feasibility of both.Promising ultraviolet screening results with the two extrinsics studied, thiamine and ascorbic acid, led to the addition of both to product stream samples titrated to different potentiometric pH values in the 3.3-4.5 range (a representative range encountered during continuous inactivation), and attempts to model pH using sample ultraviolet spectra. One model, based on variability in six spectral attributes, was able to predict pH of an independent sample set within ±0.07?units at the 95% confidence level. Since a typical inactivating pH tolerance is ±0.1 units, the results show that extrinsic indicators potentially can measure inactivation pH with sufficient accuracy. Suggested future steps and an alternative approach are presented. © 2020 American Institute of Chemical Engineers. Goby Jeffrey D JD https://orcid.org/0000-0003-4057-5485 Analytical Science, Process Science, Boehringer Ingelheim Fremont Inc., Fremont, California, USA. Furuya Kenji K Analytical Science, Process Science, Boehringer Ingelheim Fremont Inc., Fremont, California, USA. Zimmermann Eike E Analytical Science, Process Science, Boehringer Ingelheim Fremont Inc., Fremont, California, USA. Allogene, South San Francisco, California, USA. Beller Justin A JA Lonza, Houston, Texas, Texas, USA. Schmitt John M JM Lonza, Bend, Oregon, USA. Cortese Margot M Lonza, Bend, Oregon, USA. Breit Jeffrey F JF Lonza, Bend, Oregon, USA. Rezolute, Bend, Oregon, USA. Coffman Jonathan L JL Bioprocess Engineering, Process Science, Boehringer Ingelheim Fremont Inc., Fremont, California, USA. Bioprocess Technology and Engineering group at AstraZeneca, Gaithersburg, Maryland, USA. eng Journal Article 2020 02 28 United States Biotechnol Prog 8506292 1520-6033 IM ascorbic acid bioprocessing pH thiamine virus inactivation 2019 06 11 2019 12 20 2020 02 06 2020 2 29 6 0 2020 2 29 6 0 2020 2 29 6 0 aheadofprint 32109000 10.1002/btpr.2988 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Functional correlations of axial muscle fiber type proportions in the waterfall-climbing Hawaiian stream fish Sicyopterus stimpsoni.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Blob RW, Baumann T, Diamond KM, Young VKH, Schoenfuss HL<br><font color=gray><i>Journal of anatomy J. Anat. Functional correlations of axial muscle fiber type proportions in the waterfall-climbing Hawaiian stream fish Sicyopterus stimpsoni. 10.1111/joa.13169 Assessing the factors that contribute to successful locomotor performance can provide critical insight into how animals survive in challenging habitats. Locomotion is powered by muscles, so that differences in the relative proportions of red (slow-oxidative) vs. white (fast-glycolytic) fibers can have significant implications for locomotor performance. We compared the relative proportions of axial red muscle fibers between groups of juveniles of the amphidromous gobiid fish, Sicyopterus stimpsoni, from the Hawaiian Islands. Juveniles of this species migrate from the ocean into freshwater streams, navigating through a gauntlet of predators that require rapid escape responses, before reaching waterfalls which must be climbed (using a slow, inching behavior) to reach adult breeding habitats. We found that fish from Kaua'i have a smaller proportion of red fibers in their tail muscles than fish from Hawai'i, matching expectations based on the longer pre-waterfall stream reaches of Kaua'i that could increase exposure to predators, making reduction of red muscle and increases in white muscle advantageous. However, no difference in red muscle proportions was identified between fish that were either successful or unsuccessful in scaling model waterfalls during laboratory climbing trials, suggesting that proportions of red muscle are near a localized fitness peak among Hawaiian individuals. © 2020 Anatomical Society. Blob Richard W RW https://orcid.org/0000-0001-5026-343X Department of Biological Sciences, Clemson University, Clemson, SC, USA. Baumann Travis T Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, MN, USA. Diamond Kelly M KM https://orcid.org/0000-0001-8639-6795 Department of Biological Sciences, Clemson University, Clemson, SC, USA. Young Vanessa K H VKH https://orcid.org/0000-0001-8168-4261 Department of Biology, Saint Mary's College, Notre Dame, IN, USA. Schoenfuss Heiko L HL https://orcid.org/0000-0001-5464-992X Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, MN, USA. eng IOS-0817911 and IOS-0817794 NSF IOS-0817911 US National Science Foundation IOS-0817794 US National Science Foundation Journal Article 2020 02 24 England J Anat 0137162 0021-8782 IM biomechanics evolution goby locomotion physiology 2019 10 30 2020 01 20 2020 01 23 2020 2 25 6 0 2020 2 25 6 0 2020 2 25 6 0 aheadofprint 32092791 10.1111/joa.13169 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The planocerid flatworm is a main supplier of toxin to tetrodotoxin-bearing fish juveniles.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Itoi S, Sato T, Takei M, Yamada R, Ogata R, Oyama H, Teranishi S, Kishiki A, Wada T, Noguchi K, Abe M, Okabe T, Akagi H, Kashitani M, Suo R, Koito T, Takatani T, Arakawa O, Sugita H<br><font color=gray><i>Chemosphere, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Lebetus patzneri (Teleostei: Gobiidae), a new goby species from the Balearic Islands, western Mediterranean, with first records of Lebetus guilleti (Le Danois, 1913) from this area and Norway, and with notes on its biology.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Schliewen UK, Kova?i? M, Cerwenka AF, Svensen R, Ordines F<br><font color=gray><i>Zootaxa, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Mud-reef+goby&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>