Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 9733

Broader Terms:
   Angiospermae (Angiosperms) 
   Magnoliophyta (Flowering plant) 
   Tracheophyta 

More Specific:
   Apiales 
   Aristolochiales 
   Asterales 
   Asteridae 
   Batales 
   Callitrichales 
   Calycerales 
   Campanulales 
   Capparales 
   Caryophyllales 
   Caryophyllidae 
   Casuarinales 
   Celastrales 
   Cornales 
   Cornidae 
   Diapensiales 
   Dilleniales 
   Dilleniidae 
   Dipsacales 
   Ebenales 
   Ericales 
   Euphorbiales 
   Fabales 
   Fagales 
   Garryales 
   Gentianales 
   Geraniales 
   Haloragales 
   Hamamelidae 
   Hamamelidales 
   Hamamelididae 
   Illiciales 
   Juglandales 
   Lamiales 
   Lamiidae 
   Laurales 
   Lecythidales 
   Leitneriales 
   Linales 
   Magnoliales 
   Magnoliidae 
   Malpighiales 
   Malvales 
   Myricales 
   Myrtales 
   Nelumbonidae 
   Nepenthales 
   Nymphaeales 
   Nymphaeidae 
   Papaverales 
   Piperales 
   Plantaginales 
   Plumbaginales 
   Podostemales 
   Polygalales 
   Polygonales 
   Primulales 
   Proteales 
   Rafflesiales 
   Ranunculales 
   Ranunculidae 
   Rhamnales 
   Rhizophorales 
   Rosales 
   Rosidae 
   Rubiales 
   Salicales 
   Santalales 
   Sapindales 
   Scrophulariales 
   Solanales 
   Theales 
   Urticales 
   Violales 
 
 
Latest Articles on Magnoliopsida from uBioRSS


External Resources:

Common Names: Dicotylédone, דו-פסיגיים, dicotyledons, Dicotiledoni, Dicotiledônea, Zweikeimblättrige, dicotylédones, Dicotiledónea, Dicotyledon, dicots, Двудольные, Kétszikűek, dicotylédones, Dvokaličnice, İki çenekliler



1.  Uptake and elimination of butyl- and phenyltins by Ceratophyllum demersum L.LinkIT
Xiao X, Zhu S, Zou X, Song Y, Jiang J, Sheng GD
Chemosphere, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Leaf size of woody dicots predicts ecosystem primary productivity.LinkIT
Li Y, Reich PB, Schmid B, Shrestha N, Feng X, Lyu T, Maitner BS, Xu X, Li Y, Zou D, Tan ZH, Su X, Tang Z, Guo Q, Feng X, Enquist BJ, Wang Z
Ecology letters Ecol. Lett. Leaf size of woody dicots predicts ecosystem primary productivity. 1003-1013 10.1111/ele.13503 A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size-primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems. © 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd. Li Yaoqi Y https://orcid.org/0000-0001-6540-395X Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Reich Peter B PB Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA. Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia. Schmid Bernhard B Department of Geography, Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. Shrestha Nawal N https://orcid.org/0000-0002-6866-5100 Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China. Feng Xiao X https://orcid.org/0000-0003-4638-3927 Institute of the Environment, University of Arizona, Tucson, Arizona, 85721, USA. Lyu Tong T Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Maitner Brian S BS https://orcid.org/0000-0002-2118-9880 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA. Xu Xiaoting X Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China. Li Yichao Y Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Zou Dongting D Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Tan Zheng-Hong ZH College of Environment and Ecology, Hainan University, Haikou, Hainan, 570228, China. Su Xiangyan X https://orcid.org/0000-0003-0093-077X Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Tang Zhiyao Z Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Guo Qinghua Q State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. Feng Xiaojuan X https://orcid.org/0000-0002-0443-0628 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. Enquist Brian J BJ Institute of the Environment, University of Arizona, Tucson, Arizona, 85721, USA. The Santa Fe Institute, Santa Fe, NM, 87501, USA. Wang Zhiheng Z Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. eng 31988102 National Natural Science Foundation of China 31911530102 National Natural Science Foundation of China Chinese Academy of Sciences-Peking University Pioneer Collaboration Team University of Zurich Research Priority Program Letter 2020 04 06 England Ecol Lett 101121949 1461-023X IM China Ecosystem Magnoliopsida North America Plant Leaves Annual evapotranspiration China North America community mean leaf size large-scale eco-evolutionary patterns leaf area index palaeo-primary productivity plant functional traits 2020 01 13 2020 01 20 2020 02 03 2020 4 7 6 0 2020 5 22 6 0 2020 4 7 6 0 ppublish 32249502 10.1111/ele.13503 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Fertilization in flowering plants: an odyssey of sperm cell delivery.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD<br><font color=gray><i>Plant molecular biology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Influence of local density and sex ratio on pollination in an ambophilous flowering plant.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Timerman D, Barrett SCH<br><font color=gray><i>American journal of botany Am. J. Bot. Influence of local density and sex ratio on pollination in an ambophilous flowering plant. 587-598 10.1002/ajb2.1453 Variation in local density and sex ratio in dioecious plants can affect mating success through the actions of pollen vectors, principally generalist insects or wind. Increased density and male-biased sex ratios should promote pollen transfer and seed production, but their combined effects have not been investigated for ambophilous species, which exhibit both insect and wind pollination. We manipulated density (low vs. high) and sex ratio (1:1 vs. 3:1 male-biased) in arrays of dioecious ambophilous Thalictrum pubescens. We quantified visitation rates and foraging times to examine whether pollinators exhibited sex-specific preferences and determined the seed set of arrays. Pollinators visited more plants per foraging bout at high than low density. Visitation rates and foraging times of visitors were greater for male than for female plants but did not depend on the density or sex ratio of arrays. However, whereas solitary bees displayed a strong preference for males, hover flies were indifferent to plant sex phenotype. Solitary bees also visited significantly more plants per foraging bout than hover flies. There was a significant interaction between density and sex ratio on seed set. At low density, seed set was greater for 3:1 than for 1:1 arrays, but at high density the opposite pattern occurred. The demographic factors we investigated had complex influences on pollinator foraging behavior and patterns of seed set. Several factors may explain our results, including the influence of density and sex ratio on pollen export from arrays, grooming by pollinators, and the contribution of wind pollination. © 2020 Botanical Society of America. Timerman David D 0000-0002-8772-6271 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada. Barrett Spencer C H SCH 0000-0002-7762-3455 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada. eng Natural Sciences and Engineering Research Council of Canada International Journal Article Research Support, Non-U.S. Gov't 2020 03 30 United States Am J Bot 0370467 0002-9122 IM Animals Bees Female Flowers Insecta Magnoliopsida Male Pollen Pollination Sex Ratio Thalictrum Ranunculaceae ambophily biased sex ratios density dioecy insect pollination wind pollination 2019 10 20 2020 01 23 2020 4 1 6 0 2020 5 6 6 0 2020 4 1 6 0 ppublish 32227341 10.1002/ajb2.1453 LITERATURE CITED, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Reproductive ecology and postpollination development in the hydrophilous monocot Ruppia maritima.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Taylor ML, Giffei BL, Dang CL, Wilden AE, Altrichter KM, Baker EC, Nguyen R, Oki DS<br><font color=gray><i>American journal of botany Am. J. Bot. Reproductive ecology and postpollination development in the hydrophilous monocot Ruppia maritima. 689-699 10.1002/ajb2.1447 Water-pollination (hydrophily) is a rare but important pollination mechanism that has allowed angiosperms to colonize marine and aquatic habitats. Hydrophilous plants face unique reproductive challenges, and many have evolved characteristic pollen traits and pollination strategies that may have downstream consequences for pollen performance. However, little is known about reproductive development in the life history stage between pollination and fertilization (the progamic phase) in hydrophilous plants. The purpose of this study was to characterize reproductive ecology and postpollination development in water-pollinated Ruppia maritima L. Naturally pollinated inflorescences of R. maritima were collected from the field. Experimental pollinations using both putatively outcross and self pollen were conducted in the greenhouse and inflorescences were collected at appropriate intervals after pollination. Pollen reception, pollen germination, pollen tube growth, and carpel morphology were characterized. Ruppia maritima exhibits incomplete protogyny, allowing for delayed selfing. Pollen germinated within 15 min after pollination. The average shortest possible pollen tube pathway was 425 ?m and pollen tubes first reached the ovule at 45 min after pollination. The mean adjusted pollen tube growth rate was 551 ?m/h. Ruppia pollen is adapted for rapid pollen germination, which is likely advantageous in an aquatic habitat. Small effective pollen loads suggest that pollen competition intensity is low. Selection for traits such as a long period of stigma receptivity, fast pollen germination, and carpel morphology likely played a larger role in shaping postpollination reproductive development in Ruppia than evolution in pollen tube growth rates. © 2020 Botanical Society of America. Taylor Mackenzie L ML 0000-0002-2234-5945 Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Giffei Bridget L BL Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Dang Christie L CL Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Wilden Ana E AE Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Altrichter Kristine M KM Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Baker Emma C EC Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Nguyen Richard R Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. Oki Dayton S DS Department of Biology, Creighton University, Omaha, Nebraska, 68178, USA. eng Clare Boothe Luce Program for Women in Science International Creighton University International Journal Article Research Support, Non-U.S. Gov't 2020 03 13 United States Am J Bot 0370467 0002-9122 IM Alismatales Magnoliopsida Pollen Pollination Reproduction Alismatidae Ruppiaceae breeding system hydrophily pollen germination pollen tube growth rate progamic phase self-pollination water pollination 2019 10 10 2020 01 21 2020 3 15 6 0 2020 5 6 6 0 2020 3 15 6 0 ppublish 32170723 10.1002/ajb2.1447 LITERATURE CITED, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Angiosperm speciation cools down in the tropics.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Igea J, Tanentzap AJ<br><font color=gray><i>Ecology letters, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Relation of tributyltin and triphenyltin equilibrium sorption and kinetic accumulation in carp and Ceratophyllum demersum.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Xiao X, Zhu S, Zou X, He G, Jiang J, Sheng GD<br><font color=gray><i>Ecotoxicology and environmental safety, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Pollen limitation in a single year is not compensated by future reproduction.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Tye M, Dahlgren JP, Sletvold N<br><font color=gray><i>Oecologia, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>In-vitro photothermal therapy using plant extract polyphenols functionalized graphene sheets for treatment of lung cancer.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Wang C, Wang X, Chen Y, Fang Z<br><font color=gray><i>Journal of photochemistry and photobiology. B, Biology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Aquatic angiosperm ambiguities answered.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Albert VA, Renner T<br><font color=gray><i>Nature plants, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Magnoliopsida&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>