Synonyms: Lutianus argentimaculatus Lutjanus argentimaculatus (mangrove red snapper) Lutjanus argentimculatus
Broader Terms: Lutianus Lutjanus (snappers) Perciformes (perch-like fishes)  |
| |
External Resources:
| Common Names: Snapper, Merah, carpe, Rouget, Pargo, Schnapper, Margay, Hamrah, Maya-maya, Red snapper, Hamra, Sbetti, Jenahak, Ungar, Katambak, Fiamasiaka, Litetifash, Ahaan, Mangrove snapper, Sarde, Mangagat, Ikan merah, Abu dhres, Also, Pargo de mangle ....
 1. Assessment of a small-scale fishery: Lane Snapper (Lutjanus synagris) using a length metric method.
Sierra Castillo L, Fujiwara M PloS one, 2021 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
2. Morphological and biochemical effects of food deprivation during the early development of Pacific red snapper Lutjanus peru.
Peña R, Moguel-Hernández I, Haro-Ballesteros GM Journal of fish biology J Fish Biol Morphological and biochemical effects of food deprivation during the early development of Pacific red snapper Lutjanus peru. 10.1111/jfb.14669 We report the effects of food deprivation on the early development of Pacific red snapper Lutjanus peru during the first days of development. The point of no return (PNR) was determined using the feeding incidence after a delay in first feeding. The gradual deterioration of the larvae during food deprivation was recorded using morphometric, histological, enzymatic and biochemical analysis. The time to reach the PNR was 120?h after hatching. Morphologically, the total length, muscle height, head length, tail length and pectoral angle showed the biggest reductions and their growth coefficients changed significantly during food deprivation. Histologically, enterocyte height also was reduced significantly. The protein concentration and activities of the digestive enzymes trypsin, cathepsin-like and lipase showed a significant decrease; meanwhile, amylase activity remained constant during food deprivation. The concentration of total essential free amino acids (EFAAs) decreased significantly while that of the nonessential free amino acids (NEFAAs) remain stable during food deprivation. The most abundant EFAAs were lysine, leucine, isoleucine and valine; the most abundant NEFAAs were alanine, glycine and glutamate, suggesting a more prominent role as energy substrates. At the time of the PNR the concentration of almost all the free amino acids showed a significant decrease. Early food deprivation has a significant impact on the morphology and biochemical characteristics of L. peru. These results suggest that initial feeding of L. peru should begin within 3?days of yolk sac depletion to avoid the PNR. Further studies are necessary to confirm and validate the characters identified in this study as biomarkers of starvation under culture conditions and evaluate their possible utility in ichthyoplankton surveys. © 2021 Fisheries Society of the British Isles. Peña Renato R https://orcid.org/0000-0002-7559-585X Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Unidad Piloto de Maricultivos, La Paz, Mexico. Moguel-Hernández Ivette I Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Unidad Piloto de Maricultivos, La Paz, Mexico. Haro-Ballesteros Gretchen M GM Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Unidad Piloto de Maricultivos, La Paz, Mexico. eng This study was supported by the Instituto Politécnico Nacional (National Polytechnic Institute of Mexico) through Project SIP-IPN 20181018. R.P. received fellowships from the Estímulo al Desempeño de los Investigadores (Research Performance Incentives) and the Comisión de Operación y Fomento de Actividades Académicas (Commission for the Advancement of Academic Activities). Journal Article 2021 01 07 England J Fish Biol 0214055 0022-1112 IM Lutjanus peru Pacific red snapper food deprivation point of no return starvation 2020 09 12 2020 12 15 2021 01 05 2021 1 8 6 0 2021 1 8 6 0 2021 1 7 8 39 aheadofprint 33410520 10.1111/jfb.14669 REFERENCES, 2021 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
3. Hepatobiliary PAHs and prevalence of pathological changes in Red Snapper.
Pulster EL, Fogelson S, Carr BE, Mrowicki J, Murawski SA Aquatic toxicology (Amsterdam, Netherlands), 2021 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
4. Contrasting effects of constant and fluctuating pCO2 conditions on the exercise physiology of coral reef fishes.
Hannan KD, McMahon SJ, Munday PL, Rummer JL Marine environmental research, 2021 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
5. Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific.
Reguera-Rouzaud N, Díaz-Viloria N, Pérez-Enríquez R, Espino-Barr E, Rivera-Lucero MI, Munguía-Vega A Journal of fish biology J Fish Biol Drivers for genetic structure at different geographic scales for Pacific red snapper (Lutjanus peru) and yellow snapper (Lutjanus argentiventris) in the tropical eastern Pacific. 10.1111/jfb.14656 The tropical eastern Pacific (TEP) is a highly dynamic region and a model system to study how habitat discontinuities affect the distribution of shorefishes, particularly for species that display ontogenetic habitat shifts, including snappers (Lutjanidae). To evaluate the genetic structure of the Pacific red snapper (Lutjanus peru) and the yellow snapper (Lutjanus argentiventris) throughout their distribution range along the TEP, 13 and 11 microsatellite loci were analysed, respectively. The genetic diversity of L. peru (N =?446) and L. argentiventris (N =?170) was evaluated in 10 and 5 localities, respectively, showing slightly higher but non-significant values in the Gulf of California for both species. The genetic structure analysis identified the presence of significant genetic structure in both species, but the locations of the identified barriers for the gene flow differed between species. The principal driver for the genetic structure at large scales >2500?km was isolation by distance. At smaller scales (<250?km), the habitat discontinuity for juveniles and adults and the environmental differences throughout the distribution range represented potential barriers to gene flow between populations for both species. © 2020 Fisheries Society of the British Isles. Reguera-Rouzaud Nicole N Departamento de Plancton y Ecología Marina, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR), La Paz, Mexico. Díaz-Viloria Noé N https://orcid.org/0000-0001-8964-4184 Departamento de Plancton y Ecología Marina, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR), La Paz, Mexico. Pérez-Enríquez Ricardo R Departamento de Acuicultura, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Mexico. Espino-Barr Elaine E Instituto Nacional de Pesca, CRIP-Manzanillo, Playa Ventana, Colima, Mexico. Rivera-Lucero Mailin Isabel MI Universidad Marítima Internacional de Panamá (UMIP), La Boca, Ancón, Panama. Munguía-Vega Adrián A Conservation Genetics Laboratory & Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, Arizona, USA. @Lab Applied Genomics, La Paz, Mexico. eng This research was supported by grants from Consejo Nacional de Ciencia y Tecnología (CONACyT) to Noé Díaz-Viloria (CB2015-257019). Nicole Reguera-Rouzaud was recipient of a CONACyT scholarship (No. 703296). Journal Article 2020 12 22 England J Fish Biol 0214055 0022-1112 IM Gulf of California, habitat discontinuity, isolation by distance, larval dispersal, microsatellites 2020 10 02 2020 12 03 2020 12 21 2020 12 23 6 0 2020 12 23 6 0 2020 12 22 5 47 aheadofprint 33349917 10.1111/jfb.14656 REFERENCES, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
6. Streptococcus iniae associated mass marine fish kill off Western Australia.
Young EJ, Bannister J, Buller NB, Vaughan-Higgins RJ, Stephens NS, Whiting SD, Yeap L, Miller TL, Warren KS Diseases of aquatic organisms, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
7. Retroporomonorchis pansho n. g., n. sp., an unusual monorchiid trematode exploiting an atypical host.
Wee NQ, Cribb TH, Cutmore SC, Martin SB Systematic parasitology, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
8. New records of Philometra spp. (Nematoda: Philometridae) from marine perciform fishes off Florida, USA, including descriptions of two new species.
Moravec F, Bakenhaster MD, Switzer TS Folia parasitologica, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
9. Complete mitochondrial genome and assembled DNA barcoding analysis of Lutjanus fulgens (Valenciennes, 1830) and its comparison with other Lutjanus species.
Afriyie G, Wang Z, Dong Z, Ayisi Larbi C, Asiedu B, Guo Y Ecology and evolution, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
10. [Toxic effects of AFB_1/T-2 toxin and intervention effects of Meyerozyma guilliermondii in dried Lutjanus erythopterus on mice].
Ye L, Zhang W, Wang Y, Tao S, Huang W, Sun L Wei sheng yan jiu = Journal of hygiene research, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
|
|