Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 21 - 30 of about 3233

Scientific:
   Larus atricilla (Laughing Gull) 

Synonyms:
   Herpetotheres cachinnans (Laughing Falcon) 
   Streptopelia senegalensis (Laughing Dove) 

Broader Terms:
   Columbiformes (doves) 
   Laughing 
   Streptopelia (turtle-doves) 

More Specific:
   Streptopelia senegalensis aegyptiaca 
   Streptopelia senegalensis cambayensis 
   Streptopelia senegalensis ermanni 
   Streptopelia senegalensis phoenicophila 
   Streptopelia senegalensis senegalensis 
   Streptopelia senegalensis sokotrae 
 
 
Latest Articles on Laughing Gull from uBioRSS
Laughing Dove - Aves - Birds Photo Pool
Gaivota risonha... - Aves em Portugal Photo Pool


Streptopelia senegalensis
McMammal - BioLib

External Resources:



21.  Laughing at funerals and frowning at weddings: Top-down influences of context-driven social judgments on emotional mimicry.LinkIT
Kastendieck T, Mauersberger H, Blaison C, Ghalib J, Hess U
Acta psychologica, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

22.  Cognitive and emotional symptoms in patients with first-ever mild stroke: The syndrome of hidden impairments.LinkIT
Vlachos G, Ihle-Hansen H, Bruun Wyller T, Brækhus A, Mangset M, Hamre C, Fure B
Journal of rehabilitation medicine, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

23.  Social Media News Production, Emotional Facebook Reactions, and the Politicization of Drug Addiction.LinkIT
Kilgo DK, Midberry J
Health communication, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

24.  Top Authors in Dermatology by h-index: A Bibliometric Analysis of 1980-2020.LinkIT
Szeto MD, Presley CL, Maymone MBC, Laughter MR, Lada SM, Runion TM, Barber C, Fonseca A, Dellavalle RP
Journal of the American Academy of Dermatology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

25.  The role of sex and femininity in preferences for unfamiliar infants among Chinese adults.LinkIT
Ding F, Cheng G, Jia Y, Zhang W, Lin N, Zhang D, Mo W
PloS one, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

26.  A systematic review of the effect of laughter yoga on physical function and psychosocial outcomes in older adults.LinkIT
Kuru Alici N, Arikan Dönmez A
Complementary therapies in clinical practice, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

27.  No Laughing Matter: How Humor Styles Relate to Feelings of Loneliness and Not Mattering.LinkIT
MacDonald KB, Kumar A, Schermer JA
Behavioral sciences (Basel, Switzerland), 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

28.  Vision adaptation in the laughing dove (Streptopelia senegalensis, Linnaeus, 1766) inferred from structural, ultrastructural, and genetic characterization. 10.1002/cne.25059 Neuroanatomy of the retina reflects adaptation and acclimation for dark and light conditions. Retinal cells and genes must be functionally adjusted to various environmental luminosities. Opsins are brilliant molecules to assess the adaptations at the genetic and phenotypic levels. Photic adaptations may reveal new mechanisms that enhance vision abilities. Through the investigation of histological, ultrastructural constituents of the whole retinal layers, and the sequencing of shortwave length sensitive opsin 1 (SWS1) of the laughing dove (Streptopelia senegalensis), the current study confirms the plasticity of the retina in response to the natural photic conditions. Retinal pigmented epithelium has plentiful melanosomes, signifying a highly adapted eye for maximum light perception and protection. Variously colored oil droplets signify high color vision ability. Stratified outer nuclear layer with many Müller cells suggests high sensitivity to dim conditions and high retinal regeneration. The penetration of outer limiting membrane by photoreceptor nuclei and Müller cell microvilli could minimize the light reflection. Oligodendrocytes establish thick myelination demanded for a keen visual acuity. A functional violet sensitive SWS1 with crucial Ser90 is presumed. Molecular phylogeny showed a secondary loss as color vision was shifted back from ultraviolet (UV) sensitivity to the ancestral avian violet sensitivity, thus improving visual resolution. However, SWS1 has some UV sensitive residues. These findings implicate not only spectral adaptations with high color vision ability and acuity but also photoinduced structural reorganizations. Further studies are needed to assess the secrets between photons and the structural genes. © 2020 Wiley Periodicals LLC. Sultan Aya E AE Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. Ghoneim Ahmed M AM https://orcid.org/0000-0003-2839-9538 Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. El-Gammal Hekmat L HL Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. El-Bakary Neveen E R NER Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. eng Damietta University Journal Article 2020 10 23 United States J Comp Neurol 0406041 0021-9967 IM laughing dove (Streptopelia senegalensis) photoreceptors phylogeny retina shortwave-sensitive opsin 1 (SWS1) vision 2020 06 23 2020 10 12 2020 10 19 2020 10 24 6 0 2020 10 24 6 0 2020 10 23 8 39 aheadofprint 33094834 10.1002/cne.25059 REFERENCES Ali, S, & Ripley, S. (1981). Handbook of the birds of India and Pakistan (p. 10). New Delhi: Oxford University Press. Alix, B., Segovia, Y., & García, M. (2017). The structure of the retina of the Eurasian eagle-owl and its relation to lifestyle. Avian Biology Research, 10, 36-44. https://doi.org/10.3184/175815617X14799886573147. Amemiya, T. (1975). Electron microscopic and cytochemical study on paraboloid glycogen of the accessory cone of the chick retina. Histochemistry, 43, 185-192. https://doi.org/10.1007/BF00492446. Bandah, D., Swissa, T., Ben-Shlomo, G., Banin, E., Ofri, R., & Sharon, D. (2007). A complex expression pattern of Pax6 in the pigeon retina. Investigative Ophthalmology & Visual Science, 48(6), 2503-2509. https://doi.org/10.1167/iovs.06-1014. Berger, E. R. (1966). On the mitochondrial origin of oil drops in the retinal double cone inner segments. Journal of Ultrastructure Research, 14, 143-157. https://doi.org/10.1016/S0022-5320(66)80041-2. Biesemeier, A. K. (2010). Ultrastructural characterisation of melanogenesis in adult human retinal pigment epithelial cells after adenoviral transduction with the tyrosinase gene. Eberhard Karls Universität. Bouglouan, N. (2011). Laughing Dove Streptopelia senegalensis [Internet Document]. Retrieved from http://www.oiseaux-birds.com Braekevelt, C. R. (1993). Fine structure of the retinal photoreceptors of the great horned owl (Bubo virginianus). Histology and Histopathology, 8, 25-34. Brahmia, H., Zeraoula, A., Bensouilah, T., Bouslama, Z., & Houhamdi, M. (2015). Breeding biology of sympatric laughing Streptopelia senegalensis and turtle Streptopelia turtur dove: A comparative study in Northeast Algeria. Zoology and Ecology, 25(3), 220-226. https://doi.org/10.1080/21658005.2015.1049470. Bruenner, U., & Burnside, B. (1986). Pigment granule migration in isolated cells of the teleost retinal pigment epithelium. Investigative Ophthalmology and Visual Science, 27(11), 1634-1643. Campbell, L. J., & Hyde, D. R. (2017). Opportunities for CRISPR/Cas9 gene editing in retinal regeneration research. Frontiers in Cell and Developmental Biology, 5, 99. https://doi.org/10.3389/fcell.2017.00099. Carleton, K. (2009). Cichlid fish visual systems: Mechanisms of spectral tuning. Integrative Zoology, 4, 75-86. https://doi.org/10.1111/j.1749-4877.2008.00137.x. Carvalho, L. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2007). The molecular evolution of avian ultraviolet-and violet-sensitive visual pigments. Molecular Biology and Evolution, 24, 1843-1852. https://doi.org/10.1093/molbev/msm109. Cheung, D. W. S., Wai, M. S. M., & Yew, D. T. W. (2013). The diversity of cones in the retina of vertebrates: A review. OA Anatomy, 1, 1-6. https://doi.org/10.13172/2052-7829-1-1-386. Cohen, A. I. (1963). The fine structure of the visual receptors of the pigeon. Experimental Eye Research, 2, 88-IN44. https://doi.org/10.1016/S0014-4835(63)80028-7. Cohen, G. B., Oprian, D. D., & Robinson, P. R. (1992). Mechanism of activation and inactivation of opsin: Role of Glu113 and Lys296. Biochemistry, 31, 12592-12601. Collin, S. P., Davies, W. L., Hart, N. S., & Hunt, D. M. (2009). The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 2925-2940. https://doi.org/10.1098/rstb.2009.0099. Dickson, D. H., & Morrison, C. (1993). Diurnal variation in myeloid bodies of the chick retinal pigment epithelium. Current Eye Research, 12, 37-43. https://doi.org/10.3109/02713689308999494. Donatti, L., & Fanta, E. (2007). Fine structure of the retinal pigment epithelium and cones of Antarctic fish Notohenia coriiceps Richardson in light and dark-conditions. Revista Brasileira de Zoologia, 24, 33-40. https://doi.org/10.1590/S0101-81752007000100004. El-Beltagy, A. (2015). Light and electron microscopic studies on the pigmented epithelium and photoreceptors of the retina of common buzzard (Buteo buteo). Tissue and Cell, 47, 78-85 https://doi.org/10.1016/j.tice.2014.11.008. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x. Franz-Odendaal, T. A. (2020). Skeletons of the eye: An evolutionary and developmental perspective. The Anatomical Record, 303, 100-109. https://doi.org/10.1002/ar.24043. Franz-Odendaal, T. A., & Krings, M. (2019). A heterochronic shift in skeletal development in the barn owl (Tyto furcata): A description of the ocular skeleton and tubular eye shape formation. Developmental Dynamics, 248, 671-678. https://doi.org/10.1002/dvdy.65. Garamszegi, L. Z., Moller, A. P., & Erritzoe, J. (2002). Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proceedings of the Royal Society B: Biological Sciences, 269, 961-967. https://doi.org/10.1098/rspb.2002.1967. Goldsmith, T. H., Collins, J. S., & Licht, S. (1984). The cone oil droplets of avian retinas. Vision Research, 24, 1661-1671. https://doi.org/10.1016/0042-6989(84)90324-9. Grünert, U., & Martin, P. R. (2020). Cell types and cell circuits in primate retina. Progress in Retinal and Eye Research, 100844. https://doi.org/10.1016/j.preteyeres.2020.100844. Hall, M. I., & Ross, C. F. (2007). Eye shape and activity pattern in birds. Journal of Zoology, 271, 437-444. https://doi.org/10.1111/j.1469-7998.2006.00227.x. Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research, 20, 675-703. https://doi.org/10.1016/S1350-9462(01)00009-X. Hayat, M. A., & Giaquinta, R. (1970). Rapid fixation and embedding for electron microscopy. Tissue and Cell, 2, 191-195. https://doi.org/10.1016/S0040-8166(70)80015-5. Heim de Balsac, H., & Mayaud, N. (1962). Les Oiseaux du Nord-Ouest de l'Afrique: Distribution géographique, écologie, migration, reproduction [Birds of North-West Africa geographical distribution, ecology, migration, reproduction.]. Le Chevalier. Hoffmann, M., Tripathi, N., Henz, S. R., Lindholm, A. K., Weigel, D., Breden, F., & Dreyer, C. (2007). Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proceedings of the Royal Society B: Biological Sciences, 274, 33-42. https://doi.org/10.1098/rspb.2006.3707. Höglund, J., Mitkus, M., Olsson, P., Lind, O., Drews, A., Bloch, N. I., Kelber, A., & Strandh, M. (2019). Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance. Vision Research, 158, 109-119. https://doi.org/10.1016/j.visres.2019.02.005. Hope-Ross, M. W., Mahon, G. J., Gardiner, T. A., & Archer, D. B. (1993). Ultrastructural findings in solar retinopathy. Eye, 7, 29-33. https://doi.org/10.1038/eye.1993.7. Huang, C. H., Zhong, M. J., Liao, W. B., & Kotrschal, A. (2019). Investigating the role of body size, ecology, and behavior in anuran eye size evolution. Evolutionary Ecology, 33, 585-598. https://doi.org/10.1007/s10682-019-09993-0. Isenmann, P., & Moali, A. (2000). Oiseaux d'Algérie [birds of Algeria]. SEOF. Jacobs, G. H. (1992). Ultraviolet vision in vertebrates. American Zoologist, 32, 544-554. https://doi.org/10.1093/icb/32.4.544. Johnson, K. P., de Kort, S., Dinwoodey, K., Mateman, A. C., ten Cate, C., Lessells, C. M., Clayton, D. H., & Sheldon, F. (2001). A molecular phylogeny of the dove genera Streptopelia and Columba. The Auk, 118, 874-887. https://doi.org/10.1093/auk/118.4.874. Jones, M. P., Pierce, K. E., & Ward, D. (2007). Avian vision: A review of form and function with special consideration to birds of prey. Journal of Exotic Pet Medicine, 16, 69-87. https://doi.org/10.1053/j.jepm.2007.03.012. Karl, A., Agte, S., Zayas-Santiago, A., Makarov, F. N., Rivera, Y., Benedikt, J., Francke, M., Reichenbach, A., Skatchkov, S. N., & Bringmann, A. (2018). Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure. Experimental Eye Research, 173, 160-178. https://doi.org/10.1016/j.exer.2018.05.006. Karnik, S. S., Sakmar, T. P., Chen, H. B., & Khorana, H. G. (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 85, 8459-8463. Katti, C., Stacey-Solis, M., Coronel-Rojas, N. A., & Davies, W. I. L. (2018). Opsin-based photopigments expressed in the retina of a South American pit viper, Bothrops atrox (Viperidae). Visual Neuroscience, 35, e027. https://doi.org/10.1017/S0952523818000056. Kaushal, S., Ridge, K. D., & Khorana, H. G. (1994). Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 91, 4024-4028. https://doi.org/10.1073/pnas.91.9.4024. Kiama, S. G., Maina, J. N., Bhattacharjee, J., & Weyrauch, K. D. (2001). Functional morphology of the pecten oculi in the nocturnal spotted eagle owl (Bubo bubo africanus), and the diurnal black kite (Milvus migrans) and domestic fowl (Gallus gallus var. domesticus): A comparative study. Journal of Zoology, 254, 521-528. https://doi.org/10.1017/S0952836901001029. King, A. S., & McLelland, J. (1984). Birds, their structure and function (2nd ed.). Bailliere Tindall. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096. Lamb, T. D. (2009). Evolution of vertebrate retinal photoreception. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2911-2924. https://doi.org/10.1098/rstb.2009.0102. Marmor, M. F., & Wolfensberger, T. J. (1998). The retinal pigment epithelium: Function and disease. Oxford University Press. Mashige, K. P., & Oduntan, O. A. (2016). A review of the human retina with emphasis on nerve fibre layer and macula thicknesses. African Vision and Eye Health, 75, 1-8. https://doi.org/10.4102/aveh.v75i1.330. Melin, A. D., Moritz, G. L., Fosbury, R. A. E., Kawamura, S., & Dominy, N. J. (2012). Why aye-ayes see blue. American Journal of Primatology, 74, 185-192. https://doi.org/10.1002/ajp.21996. Mitkus, M., Olsson, P., Toomey, M. B., Corbo, J. C., & Kelber, A. (2017). Specialized photoreceptor composition in the raptor fovea. Journal of Comparative Neurology, 525, 2152-2163. https://doi.org/10.1002/cne.24190. Mitkus, M., Potier, S., Martin, G. R., Duriez, O., & Kelber, A. (2018). Raptor vision. Oxford Research Encyclopedia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.232. Montoyo, Y. G., García, M., & Segovia, Y. (2018). Light and electron microscopic studies on the retina of the booted eagle (Aquila pennata). Zoomorphology, 137, 177-190. https://doi.org/10.1007/s00435-017-0373-8. Nagashima, M., Barthel, L. K., & Raymond, P. A. (2013). A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development, 140(22), 4510-4521. https://doi.org/10.1242/dev.090738. Nakazawa, T., Tachi, S., Aikawa, E., & Ihnuma, M. (1993). Formation of the myelinated nerve fiber layer in the chicken retina. Glia, 8, 114-121. https://doi.org/10.1002/glia.440080207. Nguyen-Legros, J. (1978). Fine structure of the pigment epithelium in the vertebrate retina. International Review of Cytology, 7, 287-328. O'Daly, J. A. (2017). Ultrastructure of Mugil brasiliensis teleost retina I: Cones, rods, horizontal, bipolar, piriform amacrines, tubular cells, undulate amacrine cells, outer and inner plexiform layers. Journal of Advances in Medicine and Medical Research, 19, 1-16. https://doi.org/10.9734/BJMMR/2017/30371. Ödeen, A., & Håstad, O. (2003). Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution, 20, 855-861. https://doi.org/10.1093/molbev/msg108. Ödeen, A., & Håstad, O. (2013). The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evolutionary Biology, 13, 36. https://doi.org/10.1186/1471-2148-13-36. Ovchinnikov, Y. A., Abdulaev, N. G., & Bogachuk, A. S. (1988). Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Letters, 230, 1-5. Palacios, A. G., & Varela, F. J. (1992). Color mixing in the pigeon (Columba livia) II: A psychophysical determination in the middle, short and near-UV wavelength range. Vision Research, 32, 1947-1953. https://doi.org/10.1016/0042-6989(92)90054-M. Peters, J. L. (1937). Check-list of birds of the world. Harvard University Press. Potier, S., Mitkus, M., & Kelber, A. (2018). High resolution of colour vision, but low contrast sensitivity in a diurnal raptor. Proceedings of the Royal Society B: Biological Sciences, 285, 20181036. https://doi.org/10.1098/rspb.2018.1036. Robinson, C. (1956). Observations on the nesting of a pair of laughing doves. Ostrich, 27(2), 70-75. https://doi.org/10.1080/00306525.1956.9633056. Rodrigues, T., Krawczyk, M., Skowronska-Krawczyk, D., Matter-Sadzinski, L., & Matter, J. M. (2016). Delayed neurogenesis with respect to eye growth shapes the pigeon retina for high visual acuity. Development, 143(24), 4701-4712. https://doi.org/10.1242/dev.138719. Röll, B. (2001). Gecko vision-Retinal organization, foveae and implications for binocular vision. Vision Research, 41, 2043-2056. https://doi.org/10.1016/S0042-6989(01)00093-1. Rowe, M. H., & Stone, J. (1980). The interpretation of variation in the classification of nerve cells. Brain, Behavior and Evolution, 17, 123-151. https://doi.org/10.1159/000121794. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. Sakmar, T. P., Franke, R. R., & Khorana, H. G. (1989). Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 86, 8309-8313. Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D., Miyagi, R., Sluijs, I., Schneider, M. V., Maan, M. E., Tachida, H., Imai, H., & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature, 455, 620-626. https://doi.org/10.1038/nature07285. Shi, Y., Radlwimmer, F. B., & Yokoyama, S. (2001). Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 98, 11731-11736. https://doi.org/10.1073/pnas.201257398. Shi, Y., & Yokoyama, S. (2003). Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences, 100(14), 8308-8313. http://dx.doi.org/10.1073/pnas.1532535100. Sosula, L., & Glow, P. H. (1970). A quantitative ultrastructural study of the inner plexiform layer of the rat retina. Journal of Comparative Neurology, 140, 439-477. https://doi.org/10.1002/cne.901400405. Stavenga, D. G., & Wilts, B. D. (2014). Oil droplets of bird eyes: Microlenses acting as spectral filters. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369, 20130041. https://doi.org/10.1098/rstb.2013.0041. Tabor, G. A., & Fisher, S. K. (1983). Myeloid bodies in the mammalian retinal pigment epithelium. Investigative Ophthalmology and Visual Science, 24(3), 388-391. Tancred, E. (1981). The distribution and sizes of ganglion cells in the retinas of five Australian marsupials. Journal of Comparative Neurology, 196, 585-603. https://doi.org/10.1002/cne.901960406. Ticehurst, C. B. (1923). The birds of Sind (part V). Ibis, 65, 438-473. https://doi.org/10.1111/j.1474-919X.1923.tb08108.x. Timlin, J. A., Toomey, M. B., Collins, A. M., Frederiksen, R., Cornwall, M. C., & Corbo, J. C. (2015). A complex carotenoid palette tunes avian color vision. Interface, 12, 20150563. https://doi.org/10.1098/rsif.2015.0563. Toomey, M. B., & Corbo, J. C. (2017). Evolution, development and function of vertebrate cone oil droplets. Frontiers in Neural Circuits, 11, 97. https://doi.org/10.3389/fncir.2017.00097. Tsutsui, K., Imai, H., & Shichida, Y. (2008). E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment. Biochemistry, 47, 10829-10833. https://doi.org/10.1021/bi801377v. Walls, G. L. (1942). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science. Walls, G. L., & Judd, H. D. (1933). The intra-ocular colour-filters of vertebrates. The British Journal of Ophthalmology, 17(11), 641-675. https://doi.org/10.1136/bjo.17.11.641. Wilby, D., & Roberts, N. W. (2017). Optical influence of oil droplets on cone photoreceptor sensitivity. Journal of Experimental Biology, 220(11), 1997-2004. https://doi.org/10.1242/jeb.152918. Wilby, D., Toomey, M. B., Olsson, P., Frederiksen, R., Cornwall, M. C., Oulton, R., Kelber, A., Corbo, J. C., & Roberts, N. W. (2015). Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). Journal of the Royal Society Interface, 12, 20150591. https://doi.org/10.1098/rsif.2015.0591. Wilkie, E. S., Vissers, P. M. A. M., Das, D., Degrip, J. W., Bowmaker, K. J., & Hunt, M. D. (1998). The molecular basis for UV vision in birds: Spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochemical Journal, 330, 541-547. https://doi.org/10.1042/bj3300541. Wilkie, S. E., Robinson, P. R., Cronin, T. W., Poopalasundaram, S., Bowmaker, J. K., & Hunt, D. M. (2000). Spectral tuning of avian violet-and ultraviolet-sensitive visual pigments. Biochemistry, 39, 7895-7901. https://doi.org/10.1021/bi992776m. Wu, Y., Hadly, E. A., Teng, W., Hao, Y., Liang, W., Liu, Y., & Wang, H. (2016). Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors. Scientific Reports, 6, 1-12. https://doi.org/10.1038/srep33578. Yokoyama, S., Radlwimmer, F. B., & Blow, N. S. (2000). Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proceedings of the National Academy of Sciences of the United States of America, 97, 7366-7371. https://doi.org/10.1073/pnas.97.13.7366. Yokoyama, S., Tada, T., Liu, Y., Faggionato, D., & Altun, A. (2016). A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates. BMC Evolutionary Biology, 16, 64. https://doi.org/10.1186/s12862-016-0637-9. Yorke, M. A., & Dickson, D. H. (1985). A cytochemical study of myeloid bodies in the retinal pigment epithelium of the newt Notophthalmus viridescens. Cell and Tissue Research, 240, 641-648. https://doi.org/10.1007/BF00216352. Young, R. W., & Bok, D. (1970). Autoradiographic studies on the metabolism of the retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 9(7), 524-536. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving genes and proteins. Academic Press. 33085325 NBK563178 StatPearls Publishing Treasure Island (FL) StatPearls 2020 01 2020 01 Internet Electrodiagnostic Evaluation Of Motor Neuron DiseaseLinkIT
Sultan AE, Ghoneim AM, El-Gammal HL, El-Bakary NER, , Ramroop H, Cruz R
The Journal of comparative neurology J Comp Neurol Vision adaptation in the laughing dove (Streptopelia senegalensis, Linnaeus, 1766) inferred from structural, ultrastructural, and genetic characterization. 10.1002/cne.25059 Neuroanatomy of the retina reflects adaptation and acclimation for dark and light conditions. Retinal cells and genes must be functionally adjusted to various environmental luminosities. Opsins are brilliant molecules to assess the adaptations at the genetic and phenotypic levels. Photic adaptations may reveal new mechanisms that enhance vision abilities. Through the investigation of histological, ultrastructural constituents of the whole retinal layers, and the sequencing of shortwave length sensitive opsin 1 (SWS1) of the laughing dove (Streptopelia senegalensis), the current study confirms the plasticity of the retina in response to the natural photic conditions. Retinal pigmented epithelium has plentiful melanosomes, signifying a highly adapted eye for maximum light perception and protection. Variously colored oil droplets signify high color vision ability. Stratified outer nuclear layer with many Müller cells suggests high sensitivity to dim conditions and high retinal regeneration. The penetration of outer limiting membrane by photoreceptor nuclei and Müller cell microvilli could minimize the light reflection. Oligodendrocytes establish thick myelination demanded for a keen visual acuity. A functional violet sensitive SWS1 with crucial Ser90 is presumed. Molecular phylogeny showed a secondary loss as color vision was shifted back from ultraviolet (UV) sensitivity to the ancestral avian violet sensitivity, thus improving visual resolution. However, SWS1 has some UV sensitive residues. These findings implicate not only spectral adaptations with high color vision ability and acuity but also photoinduced structural reorganizations. Further studies are needed to assess the secrets between photons and the structural genes. © 2020 Wiley Periodicals LLC. Sultan Aya E AE Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. Ghoneim Ahmed M AM https://orcid.org/0000-0003-2839-9538 Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. El-Gammal Hekmat L HL Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. El-Bakary Neveen E R NER Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. eng Damietta University Journal Article 2020 10 23 United States J Comp Neurol 0406041 0021-9967 IM laughing dove (Streptopelia senegalensis) photoreceptors phylogeny retina shortwave-sensitive opsin 1 (SWS1) vision 2020 06 23 2020 10 12 2020 10 19 2020 10 24 6 0 2020 10 24 6 0 2020 10 23 8 39 aheadofprint 33094834 10.1002/cne.25059 REFERENCES, 2020</Year> <Month>Oct</Month> <Day>23</Day> </PubDate> </JournalIssue> <Title>The Journal of comparative neurology J Comp Neurol Vision adaptation in the laughing dove (Streptopelia senegalensis, Linnaeus, 1766) inferred from structural, ultrastructural, and genetic characterization. 10.1002/cne.25059 Neuroanatomy of the retina reflects adaptation and acclimation for dark and light conditions. Retinal cells and genes must be functionally adjusted to various environmental luminosities. Opsins are brilliant molecules to assess the adaptations at the genetic and phenotypic levels. Photic adaptations may reveal new mechanisms that enhance vision abilities. Through the investigation of histological, ultrastructural constituents of the whole retinal layers, and the sequencing of shortwave length sensitive opsin 1 (SWS1) of the laughing dove (Streptopelia senegalensis), the current study confirms the plasticity of the retina in response to the natural photic conditions. Retinal pigmented epithelium has plentiful melanosomes, signifying a highly adapted eye for maximum light perception and protection. Variously colored oil droplets signify high color vision ability. Stratified outer nuclear layer with many Müller cells suggests high sensitivity to dim conditions and high retinal regeneration. The penetration of outer limiting membrane by photoreceptor nuclei and Müller cell microvilli could minimize the light reflection. Oligodendrocytes establish thick myelination demanded for a keen visual acuity. A functional violet sensitive SWS1 with crucial Ser90 is presumed. Molecular phylogeny showed a secondary loss as color vision was shifted back from ultraviolet (UV) sensitivity to the ancestral avian violet sensitivity, thus improving visual resolution. However, SWS1 has some UV sensitive residues. These findings implicate not only spectral adaptations with high color vision ability and acuity but also photoinduced structural reorganizations. Further studies are needed to assess the secrets between photons and the structural genes. © 2020 Wiley Periodicals LLC. Sultan Aya E AE Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. Ghoneim Ahmed M AM https://orcid.org/0000-0003-2839-9538 Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. El-Gammal Hekmat L HL Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. El-Bakary Neveen E R NER Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt. eng Damietta University Journal Article 2020 10 23 United States J Comp Neurol 0406041 0021-9967 IM laughing dove (Streptopelia senegalensis) photoreceptors phylogeny retina shortwave-sensitive opsin 1 (SWS1) vision 2020 06 23 2020 10 12 2020 10 19 2020 10 24 6 0 2020 10 24 6 0 2020 10 23 8 39 aheadofprint 33094834 10.1002/cne.25059 REFERENCES Ali, S, & Ripley, S. (1981). Handbook of the birds of India and Pakistan (p. 10). New Delhi: Oxford University Press. Alix, B., Segovia, Y., & García, M. (2017). The structure of the retina of the Eurasian eagle-owl and its relation to lifestyle. Avian Biology Research, 10, 36-44. https://doi.org/10.3184/175815617X14799886573147. Amemiya, T. (1975). Electron microscopic and cytochemical study on paraboloid glycogen of the accessory cone of the chick retina. Histochemistry, 43, 185-192. https://doi.org/10.1007/BF00492446. Bandah, D., Swissa, T., Ben-Shlomo, G., Banin, E., Ofri, R., & Sharon, D. (2007). A complex expression pattern of Pax6 in the pigeon retina. Investigative Ophthalmology & Visual Science, 48(6), 2503-2509. https://doi.org/10.1167/iovs.06-1014. Berger, E. R. (1966). On the mitochondrial origin of oil drops in the retinal double cone inner segments. Journal of Ultrastructure Research, 14, 143-157. https://doi.org/10.1016/S0022-5320(66)80041-2. Biesemeier, A. K. (2010). Ultrastructural characterisation of melanogenesis in adult human retinal pigment epithelial cells after adenoviral transduction with the tyrosinase gene. Eberhard Karls Universität. Bouglouan, N. (2011). Laughing Dove Streptopelia senegalensis [Internet Document]. Retrieved from http://www.oiseaux-birds.com Braekevelt, C. R. (1993). Fine structure of the retinal photoreceptors of the great horned owl (Bubo virginianus). Histology and Histopathology, 8, 25-34. Brahmia, H., Zeraoula, A., Bensouilah, T., Bouslama, Z., & Houhamdi, M. (2015). Breeding biology of sympatric laughing Streptopelia senegalensis and turtle Streptopelia turtur dove: A comparative study in Northeast Algeria. Zoology and Ecology, 25(3), 220-226. https://doi.org/10.1080/21658005.2015.1049470. Bruenner, U., & Burnside, B. (1986). Pigment granule migration in isolated cells of the teleost retinal pigment epithelium. Investigative Ophthalmology and Visual Science, 27(11), 1634-1643. Campbell, L. J., & Hyde, D. R. (2017). Opportunities for CRISPR/Cas9 gene editing in retinal regeneration research. Frontiers in Cell and Developmental Biology, 5, 99. https://doi.org/10.3389/fcell.2017.00099. Carleton, K. (2009). Cichlid fish visual systems: Mechanisms of spectral tuning. Integrative Zoology, 4, 75-86. https://doi.org/10.1111/j.1749-4877.2008.00137.x. Carvalho, L. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2007). The molecular evolution of avian ultraviolet-and violet-sensitive visual pigments. Molecular Biology and Evolution, 24, 1843-1852. https://doi.org/10.1093/molbev/msm109. Cheung, D. W. S., Wai, M. S. M., & Yew, D. T. W. (2013). The diversity of cones in the retina of vertebrates: A review. OA Anatomy, 1, 1-6. https://doi.org/10.13172/2052-7829-1-1-386. Cohen, A. I. (1963). The fine structure of the visual receptors of the pigeon. Experimental Eye Research, 2, 88-IN44. https://doi.org/10.1016/S0014-4835(63)80028-7. Cohen, G. B., Oprian, D. D., & Robinson, P. R. (1992). Mechanism of activation and inactivation of opsin: Role of Glu113 and Lys296. Biochemistry, 31, 12592-12601. Collin, S. P., Davies, W. L., Hart, N. S., & Hunt, D. M. (2009). The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 2925-2940. https://doi.org/10.1098/rstb.2009.0099. Dickson, D. H., & Morrison, C. (1993). Diurnal variation in myeloid bodies of the chick retinal pigment epithelium. Current Eye Research, 12, 37-43. https://doi.org/10.3109/02713689308999494. Donatti, L., & Fanta, E. (2007). Fine structure of the retinal pigment epithelium and cones of Antarctic fish Notohenia coriiceps Richardson in light and dark-conditions. Revista Brasileira de Zoologia, 24, 33-40. https://doi.org/10.1590/S0101-81752007000100004. El-Beltagy, A. (2015). Light and electron microscopic studies on the pigmented epithelium and photoreceptors of the retina of common buzzard (Buteo buteo). Tissue and Cell, 47, 78-85 https://doi.org/10.1016/j.tice.2014.11.008. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x. Franz-Odendaal, T. A. (2020). Skeletons of the eye: An evolutionary and developmental perspective. The Anatomical Record, 303, 100-109. https://doi.org/10.1002/ar.24043. Franz-Odendaal, T. A., & Krings, M. (2019). A heterochronic shift in skeletal development in the barn owl (Tyto furcata): A description of the ocular skeleton and tubular eye shape formation. Developmental Dynamics, 248, 671-678. https://doi.org/10.1002/dvdy.65. Garamszegi, L. Z., Moller, A. P., & Erritzoe, J. (2002). Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proceedings of the Royal Society B: Biological Sciences, 269, 961-967. https://doi.org/10.1098/rspb.2002.1967. Goldsmith, T. H., Collins, J. S., & Licht, S. (1984). The cone oil droplets of avian retinas. Vision Research, 24, 1661-1671. https://doi.org/10.1016/0042-6989(84)90324-9. Grünert, U., & Martin, P. R. (2020). Cell types and cell circuits in primate retina. Progress in Retinal and Eye Research, 100844. https://doi.org/10.1016/j.preteyeres.2020.100844. Hall, M. I., & Ross, C. F. (2007). Eye shape and activity pattern in birds. Journal of Zoology, 271, 437-444. https://doi.org/10.1111/j.1469-7998.2006.00227.x. Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research, 20, 675-703. https://doi.org/10.1016/S1350-9462(01)00009-X. Hayat, M. A., & Giaquinta, R. (1970). Rapid fixation and embedding for electron microscopy. Tissue and Cell, 2, 191-195. https://doi.org/10.1016/S0040-8166(70)80015-5. Heim de Balsac, H., & Mayaud, N. (1962). Les Oiseaux du Nord-Ouest de l'Afrique: Distribution géographique, écologie, migration, reproduction [Birds of North-West Africa geographical distribution, ecology, migration, reproduction.]. Le Chevalier. Hoffmann, M., Tripathi, N., Henz, S. R., Lindholm, A. K., Weigel, D., Breden, F., & Dreyer, C. (2007). Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proceedings of the Royal Society B: Biological Sciences, 274, 33-42. https://doi.org/10.1098/rspb.2006.3707. Höglund, J., Mitkus, M., Olsson, P., Lind, O., Drews, A., Bloch, N. I., Kelber, A., & Strandh, M. (2019). Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance. Vision Research, 158, 109-119. https://doi.org/10.1016/j.visres.2019.02.005. Hope-Ross, M. W., Mahon, G. J., Gardiner, T. A., & Archer, D. B. (1993). Ultrastructural findings in solar retinopathy. Eye, 7, 29-33. https://doi.org/10.1038/eye.1993.7. Huang, C. H., Zhong, M. J., Liao, W. B., & Kotrschal, A. (2019). Investigating the role of body size, ecology, and behavior in anuran eye size evolution. Evolutionary Ecology, 33, 585-598. https://doi.org/10.1007/s10682-019-09993-0. Isenmann, P., & Moali, A. (2000). Oiseaux d'Algérie [birds of Algeria]. SEOF. Jacobs, G. H. (1992). Ultraviolet vision in vertebrates. American Zoologist, 32, 544-554. https://doi.org/10.1093/icb/32.4.544. Johnson, K. P., de Kort, S., Dinwoodey, K., Mateman, A. C., ten Cate, C., Lessells, C. M., Clayton, D. H., & Sheldon, F. (2001). A molecular phylogeny of the dove genera Streptopelia and Columba. The Auk, 118, 874-887. https://doi.org/10.1093/auk/118.4.874. Jones, M. P., Pierce, K. E., & Ward, D. (2007). Avian vision: A review of form and function with special consideration to birds of prey. Journal of Exotic Pet Medicine, 16, 69-87. https://doi.org/10.1053/j.jepm.2007.03.012. Karl, A., Agte, S., Zayas-Santiago, A., Makarov, F. N., Rivera, Y., Benedikt, J., Francke, M., Reichenbach, A., Skatchkov, S. N., & Bringmann, A. (2018). Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure. Experimental Eye Research, 173, 160-178. https://doi.org/10.1016/j.exer.2018.05.006. Karnik, S. S., Sakmar, T. P., Chen, H. B., & Khorana, H. G. (1988). Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 85, 8459-8463. Katti, C., Stacey-Solis, M., Coronel-Rojas, N. A., & Davies, W. I. L. (2018). Opsin-based photopigments expressed in the retina of a South American pit viper, Bothrops atrox (Viperidae). Visual Neuroscience, 35, e027. https://doi.org/10.1017/S0952523818000056. Kaushal, S., Ridge, K. D., & Khorana, H. G. (1994). Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 91, 4024-4028. https://doi.org/10.1073/pnas.91.9.4024. Kiama, S. G., Maina, J. N., Bhattacharjee, J., & Weyrauch, K. D. (2001). Functional morphology of the pecten oculi in the nocturnal spotted eagle owl (Bubo bubo africanus), and the diurnal black kite (Milvus migrans) and domestic fowl (Gallus gallus var. domesticus): A comparative study. Journal of Zoology, 254, 521-528. https://doi.org/10.1017/S0952836901001029. King, A. S., & McLelland, J. (1984). Birds, their structure and function (2nd ed.). Bailliere Tindall. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549. https://doi.org/10.1093/molbev/msy096. Lamb, T. D. (2009). Evolution of vertebrate retinal photoreception. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2911-2924. https://doi.org/10.1098/rstb.2009.0102. Marmor, M. F., & Wolfensberger, T. J. (1998). The retinal pigment epithelium: Function and disease. Oxford University Press. Mashige, K. P., & Oduntan, O. A. (2016). A review of the human retina with emphasis on nerve fibre layer and macula thicknesses. African Vision and Eye Health, 75, 1-8. https://doi.org/10.4102/aveh.v75i1.330. Melin, A. D., Moritz, G. L., Fosbury, R. A. E., Kawamura, S., & Dominy, N. J. (2012). Why aye-ayes see blue. American Journal of Primatology, 74, 185-192. https://doi.org/10.1002/ajp.21996. Mitkus, M., Olsson, P., Toomey, M. B., Corbo, J. C., & Kelber, A. (2017). Specialized photoreceptor composition in the raptor fovea. Journal of Comparative Neurology, 525, 2152-2163. https://doi.org/10.1002/cne.24190. Mitkus, M., Potier, S., Martin, G. R., Duriez, O., & Kelber, A. (2018). Raptor vision. Oxford Research Encyclopedia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.232. Montoyo, Y. G., García, M., & Segovia, Y. (2018). Light and electron microscopic studies on the retina of the booted eagle (Aquila pennata). Zoomorphology, 137, 177-190. https://doi.org/10.1007/s00435-017-0373-8. Nagashima, M., Barthel, L. K., & Raymond, P. A. (2013). A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development, 140(22), 4510-4521. https://doi.org/10.1242/dev.090738. Nakazawa, T., Tachi, S., Aikawa, E., & Ihnuma, M. (1993). Formation of the myelinated nerve fiber layer in the chicken retina. Glia, 8, 114-121. https://doi.org/10.1002/glia.440080207. Nguyen-Legros, J. (1978). Fine structure of the pigment epithelium in the vertebrate retina. International Review of Cytology, 7, 287-328. O'Daly, J. A. (2017). Ultrastructure of Mugil brasiliensis teleost retina I: Cones, rods, horizontal, bipolar, piriform amacrines, tubular cells, undulate amacrine cells, outer and inner plexiform layers. Journal of Advances in Medicine and Medical Research, 19, 1-16. https://doi.org/10.9734/BJMMR/2017/30371. Ödeen, A., & Håstad, O. (2003). Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution, 20, 855-861. https://doi.org/10.1093/molbev/msg108. Ödeen, A., & Håstad, O. (2013). The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evolutionary Biology, 13, 36. https://doi.org/10.1186/1471-2148-13-36. Ovchinnikov, Y. A., Abdulaev, N. G., & Bogachuk, A. S. (1988). Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Letters, 230, 1-5. Palacios, A. G., & Varela, F. J. (1992). Color mixing in the pigeon (Columba livia) II: A psychophysical determination in the middle, short and near-UV wavelength range. Vision Research, 32, 1947-1953. https://doi.org/10.1016/0042-6989(92)90054-M. Peters, J. L. (1937). Check-list of birds of the world. Harvard University Press. Potier, S., Mitkus, M., & Kelber, A. (2018). High resolution of colour vision, but low contrast sensitivity in a diurnal raptor. Proceedings of the Royal Society B: Biological Sciences, 285, 20181036. https://doi.org/10.1098/rspb.2018.1036. Robinson, C. (1956). Observations on the nesting of a pair of laughing doves. Ostrich, 27(2), 70-75. https://doi.org/10.1080/00306525.1956.9633056. Rodrigues, T., Krawczyk, M., Skowronska-Krawczyk, D., Matter-Sadzinski, L., & Matter, J. M. (2016). Delayed neurogenesis with respect to eye growth shapes the pigeon retina for high visual acuity. Development, 143(24), 4701-4712. https://doi.org/10.1242/dev.138719. Röll, B. (2001). Gecko vision-Retinal organization, foveae and implications for binocular vision. Vision Research, 41, 2043-2056. https://doi.org/10.1016/S0042-6989(01)00093-1. Rowe, M. H., & Stone, J. (1980). The interpretation of variation in the classification of nerve cells. Brain, Behavior and Evolution, 17, 123-151. https://doi.org/10.1159/000121794. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. Sakmar, T. P., Franke, R. R., & Khorana, H. G. (1989). Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 86, 8309-8313. Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D., Miyagi, R., Sluijs, I., Schneider, M. V., Maan, M. E., Tachida, H., Imai, H., & Okada, N. (2008). Speciation through sensory drive in cichlid fish. Nature, 455, 620-626. https://doi.org/10.1038/nature07285. Shi, Y., Radlwimmer, F. B., & Yokoyama, S. (2001). Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 98, 11731-11736. https://doi.org/10.1073/pnas.201257398. Shi, Y., & Yokoyama, S. (2003). Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences, 100(14), 8308-8313. http://dx.doi.org/10.1073/pnas.1532535100. Sosula, L., & Glow, P. H. (1970). A quantitative ultrastructural study of the inner plexiform layer of the rat retina. Journal of Comparative Neurology, 140, 439-477. https://doi.org/10.1002/cne.901400405. Stavenga, D. G., & Wilts, B. D. (2014). Oil droplets of bird eyes: Microlenses acting as spectral filters. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369, 20130041. https://doi.org/10.1098/rstb.2013.0041. Tabor, G. A., & Fisher, S. K. (1983). Myeloid bodies in the mammalian retinal pigment epithelium. Investigative Ophthalmology and Visual Science, 24(3), 388-391. Tancred, E. (1981). The distribution and sizes of ganglion cells in the retinas of five Australian marsupials. Journal of Comparative Neurology, 196, 585-603. https://doi.org/10.1002/cne.901960406. Ticehurst, C. B. (1923). The birds of Sind (part V). Ibis, 65, 438-473. https://doi.org/10.1111/j.1474-919X.1923.tb08108.x. Timlin, J. A., Toomey, M. B., Collins, A. M., Frederiksen, R., Cornwall, M. C., & Corbo, J. C. (2015). A complex carotenoid palette tunes avian color vision. Interface, 12, 20150563. https://doi.org/10.1098/rsif.2015.0563. Toomey, M. B., & Corbo, J. C. (2017). Evolution, development and function of vertebrate cone oil droplets. Frontiers in Neural Circuits, 11, 97. https://doi.org/10.3389/fncir.2017.00097. Tsutsui, K., Imai, H., & Shichida, Y. (2008). E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment. Biochemistry, 47, 10829-10833. https://doi.org/10.1021/bi801377v. Walls, G. L. (1942). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science. Walls, G. L., & Judd, H. D. (1933). The intra-ocular colour-filters of vertebrates. The British Journal of Ophthalmology, 17(11), 641-675. https://doi.org/10.1136/bjo.17.11.641. Wilby, D., & Roberts, N. W. (2017). Optical influence of oil droplets on cone photoreceptor sensitivity. Journal of Experimental Biology, 220(11), 1997-2004. https://doi.org/10.1242/jeb.152918. Wilby, D., Toomey, M. B., Olsson, P., Frederiksen, R., Cornwall, M. C., Oulton, R., Kelber, A., Corbo, J. C., & Roberts, N. W. (2015). Optics of cone photoreceptors in the chicken (Gallus gallus domesticus). Journal of the Royal Society Interface, 12, 20150591. https://doi.org/10.1098/rsif.2015.0591. Wilkie, E. S., Vissers, P. M. A. M., Das, D., Degrip, J. W., Bowmaker, K. J., & Hunt, M. D. (1998). The molecular basis for UV vision in birds: Spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochemical Journal, 330, 541-547. https://doi.org/10.1042/bj3300541. Wilkie, S. E., Robinson, P. R., Cronin, T. W., Poopalasundaram, S., Bowmaker, J. K., & Hunt, D. M. (2000). Spectral tuning of avian violet-and ultraviolet-sensitive visual pigments. Biochemistry, 39, 7895-7901. https://doi.org/10.1021/bi992776m. Wu, Y., Hadly, E. A., Teng, W., Hao, Y., Liang, W., Liu, Y., & Wang, H. (2016). Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors. Scientific Reports, 6, 1-12. https://doi.org/10.1038/srep33578. Yokoyama, S., Radlwimmer, F. B., & Blow, N. S. (2000). Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proceedings of the National Academy of Sciences of the United States of America, 97, 7366-7371. https://doi.org/10.1073/pnas.97.13.7366. Yokoyama, S., Tada, T., Liu, Y., Faggionato, D., & Altun, A. (2016). A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates. BMC Evolutionary Biology, 16, 64. https://doi.org/10.1186/s12862-016-0637-9. Yorke, M. A., & Dickson, D. H. (1985). A cytochemical study of myeloid bodies in the retinal pigment epithelium of the newt Notophthalmus viridescens. Cell and Tissue Research, 240, 641-648. https://doi.org/10.1007/BF00216352. Young, R. W., & Bok, D. (1970). Autoradiographic studies on the metabolism of the retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 9(7), 524-536. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving genes and proteins. Academic Press. 33085325 NBK563178 StatPearls Publishing Treasure Island (FL) StatPearls 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

29.  Recognizing affiliation in colaughter and cospeech.LinkIT
Bryant GA, Wang CS, Fusaroli R
Royal Society open science, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0



«123