Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 1208

Scientific:
   Larus atricilla (Laughing Gull) 

Synonyms:
   Herpetotheres cachinnans (Laughing Falcon) 
   Streptopelia senegalensis (Laughing Dove) 

Broader Terms:
   Columbiformes (pigeons) 
   Laughing 
   Streptopelia (turtle-doves) 

More Specific:
   Streptopelia senegalensis aegyptiaca 
   Streptopelia senegalensis cambayensis 
   Streptopelia senegalensis ermanni 
   Streptopelia senegalensis phoenicophila 
   Streptopelia senegalensis senegalensis 
   Streptopelia senegalensis sokotrae 
 
 


Streptopelia senegalensis
McMammal - BioLib

External Resources:



1.  Recreational Nitrous Oxide Abuse: Prevalence, Neurotoxicity, and Treatment.LinkIT
Xiang Y, Li L, Ma X, Li S, Xue Y, Yan P, Chen M, Wu J
Neurotoxicity research, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Automated, multiparametric monitoring of respiratory biomarkers and vital signs in clinical and home settings for COVID-19 patients.LinkIT
Ni X, Ouyang W, Jeong H, Kim JT, Tzaveils A, Mirzazadeh A, Wu C, Lee JY, Keller M, Mummidisetty CK, Patel M, Shawen N, Huang J, Chen H, Ravi S, Chang JK, Lee K, Wu Y, Lie F, Kang YJ, Kim JU, Chamorro LP, Banks AR, Bharat A, Jayaraman A, Xu S, Rogers JA
Proceedings of the National Academy of Sciences of the United States of America, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  The persuasive power of robot touch. Behavioral and evaluative consequences of non-functional touch from a robot.LinkIT
Hoffmann L, Krämer NC
PloS one, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Flexible scaling and persistence of social vocal communication. 108-113 10.1038/s41586-021-03403-8 Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication. Chen Jingyi J Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA. Markowitz Jeffrey E JE Department of Neurobiology, Harvard Medical School, Boston, MA, USA. Lilascharoen Varoth V http://orcid.org/0000-0002-9732-9966 Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA. Taylor Sandra S Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Sheurpukdi Pete P Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Keller Jason A JA http://orcid.org/0000-0001-9839-7293 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. Jensen Jennifer R JR http://orcid.org/0000-0002-3347-8911 Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Lim Byung Kook BK http://orcid.org/0000-0002-3766-5415 Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. Datta Sandeep Robert SR http://orcid.org/0000-0002-8068-3862 Department of Neurobiology, Harvard Medical School, Boston, MA, USA. Stowers Lisa L http://orcid.org/0000-0002-4403-1269 Department of Neuroscience, Scripps Research, La Jolla, CA, USA. stowers@scripps.edu. eng Journal Article 2021 03 31 England Nature 0410462 0028-0836 IM 2020 03 20 2021 02 26 2021 4 2 6 0 2021 4 2 6 0 2021 4 1 6 20 ppublish 33790464 10.1038/s41586-021-03403-8 10.1038/s41586-021-03403-8 Bachorowski, J. A. & Owren, M. J. Not all laughs are alike: voiced but not unvoiced laughter readily elicits positive affect. Psychol. Sci. 12, 252?257 (2001). 11437310 10.1111/1467-9280.00346 11437310 Darwin, C. & Prodger, P. The Expression of the Emotions in Man and Animals 3rd edn (Harper Collins, 1998). Esposito, G., Nakazawa, J., Venuti, P. & Bornstein, M. H. Judgment of infant cry: the roles of acoustic characteristics and sociodemographic characteristics. Jpn. Psychol. Res. 57, 126?134 (2015). 29681650 10.1111/jpr.12072 29681650 Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005). 16248680 1275525 10.1371/journal.pbio.0030386 Whitney, G., Alpern, M., Dizinno, G. & Horowitz, G. Female odors evoke ultrasounds from male mice. Anim. Learn. Behav. 2, 13?18 (1974). 4468889 10.3758/BF03199109 4468889 Keller, J. A. et al. Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat. Neurosci. 21, 1229?1238 (2018). 30104734 6119086 10.1038/s41593-018-0204-3 Brainard, M. S. & Doupe, A. J. Translating birdsong: songbirds as a model for basic and applied medical research. Annu. Rev. Neurosci. 36, 489?517 (2013). 23750515 4130661 10.1146/annurev-neuro-060909-152826 Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50?54 (2019). 31604300 10.1126/science.aax0287 31604300 Gao, S. C., Wei, Y. C., Wang, S. R. & Xu, X. H. Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice. Neurosci. Bull. 35, 697?708 (2019). 30900143 6616611 10.1007/s12264-019-00365-w Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258?263 (2020). Michael, V. et al. Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization. eLife 9, e63493 (2020). 33372655 7793624 10.7554/eLife.63493 Fang, Y. Y., Yamaguchi, T., Song, S. C., Tritsch, N. X. & Lin, D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192?207.e110 (2018). 29621487 5890946 10.1016/j.neuron.2018.02.019 Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018). 30385464 6482113 10.1126/science.aau5324 Maggio, J. C. & Whitney, G. Ultrasonic vocalizing by adult female mice (Mus musculus). J. Comp. Psychol. 99, 420?436 (1985). 4075780 10.1037/0735-7036.99.4.420 Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET-Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465?485.e465, (2017). 28472651 5939957 10.1016/j.neuron.2017.04.005 Arriaga, G., Zhou, E. P. & Jarvis, E. D. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS ONE 7, e46610 (2012). 23071596 3468587 10.1371/journal.pone.0046610 Tschida, K. et al. A specialized neural circuit gates social vocalizations in the mouse. Neuron 103, 459?472.e454 (2019). 31204083 31204083 10.1016/j.neuron.2019.05.025 Kohl, J. et al. Functional circuit architecture underlying parental behaviour. Nature 556, 326?331 (2018). 29643503 5908752 10.1038/s41586-018-0027-0 Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206?212 (2016). 27279213 10.1038/nature17996 Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567?631 (1999). 10202549 10.1146/annurev.neuro.22.1.567 10202549 Sainburg, T., Theilman, B., Thielk, M. & Gentner, T. Q. Parallels in the sequential organization of birdsong and human speech. Nat. Commun. 10, 3636 (2019). 31406118 6690877 10.1038/s41467-019-11605-y Chabout, J., Sarkar, A., Dunson, D. B. & Jarvis, E. D. Male mice song syntax depends on social contexts and influences female preferences. Front. Behav. Neurosci. 9, 76 (2015). 25883559 4383150 10.3389/fnbeh.2015.00076 Castellucci, G. A., Calbick, D. & McCormick, D. The temporal organization of mouse ultrasonic vocalizations. PLoS ONE 13, e0199929 (2018). 30376572 6207298 10.1371/journal.pone.0199929 Guo, Z. & Holy, T. E. Sex selectivity of mouse ultrasonic songs. Chem. Senses 32, 463?473 (2007). 17426047 10.1093/chemse/bjm015 17426047 Nyby, J., Wysocki, C. J., Whitney, G., Dizinno, G. & Schneider, J. Elicitation of male mouse ultrasonic vocalizations: I. Urinary cues. J. Comp. Physiol. Psychol. 93, 957?975 (1979). 10.1037/h0077623 Sirotin, Y. B., Costa, M. E. & Laplagne, D. A. Rodent ultrasonic vocalizations are bound to active sniffing behavior. Front. Behav. Neurosci. 8, 399 (2014). 25477796 4235378 10.3389/fnbeh.2014.00399 Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319?1328 (2005). 16158066 10.1038/nn1542 16158066 Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172?177 (2012). 22801496 3416931 10.1038/nature11270 Letzkus, J. J., Wolff, S. B. & Lüthi, A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88, 264?276 (2015). 26494276 10.1016/j.neuron.2015.09.024 26494276 Chabout, J., Jones-Macopson, J. & Jarvis, E. D. Eliciting and analyzing male mouse ultrasonic vocalization (USV) songs. J. Vis. Exp. https://doi.org/10.3791/54137 (2017). Yin, X. et al. Maternal deprivation influences pup ultrasonic vocalizations of C57BL/6J mice. PLoS ONE 11, e0160409 (2016). 27552099 4994965 10.1371/journal.pone.0160409 Cetin, A. & Callaway, E. M. Optical control of retrogradely infected neurons using drug-regulated ?TLoop? lentiviral vectors. J. Neurophysiol. 111, 2150?2159 (2014). 24572099 4044340 10.1152/jn.00495.2013 Knowland, D. et al. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170, 284?297 (2017). 28689640 5621481 10.1016/j.cell.2017.06.015 Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325?328 (2016). 26878381 5717315 10.1038/nmeth.3770 Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596?600 (2014). 25043046 25043046 10.1038/nature13321 Hurst, J. L. & Beynon, R. J. Scent wars: the chemobiology of competitive signalling in mice. BioEssays 26, 1288?1298 (2004). 15551272 10.1002/bies.20147 15551272 Nyby, J. et al. Stimuli for male mouse (Mus musculus) ultrasonic courtship vocalizations: presence of female chemosignals and/or absence of male chemosignals. J. Comp. Physiol. Psychol. 95, 623?629 (1981). 7276284 10.1037/h0077794 7276284 Reynolds, E. Urination as a social response in mice. Nature 234, 481?483 (1971). 4944197 10.1038/234481a0 4944197 Gordon-Fennell, A. G. et al. The lateral preoptic area: a novel regulator of reward seeking and neuronal activity in the ventral tegmental area. Front. Neurosci. 13, 1433 (2020). 32009893 6978721 10.3389/fnins.2019.01433 Hileman, S. M., McManus, C. J., Goodman, R. L. & Jansen, H. T. Neurons of the lateral preoptic area/rostral anterior hypothalamic area are required for photoperiodic inhibition of estrous cyclicity in sheep. Biol. Reprod. 85, 1057?1065 (2011). 21816852 3197919 10.1095/biolreprod.111.092031 Ono, T., Nakamura, K., Nishijo, H. & Fukuda, M. Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. J. Neurophysiol. 56, 63?79 (1986). 3746401 10.1152/jn.1986.56.1.63 Osaka, T. et al. Lateral preoptic neurons inhibit thirst in the rat. Brain Res. Bull. 31, 135?144 (1993). 8453484 10.1016/0361-9230(93)90020-C 8453484 Szymusiak, R., Gvilia, I. & McGinty, D. Hypothalamic control of sleep. Sleep Med. 8, 291?301 (2007). 17468047 10.1016/j.sleep.2007.03.013 17468047 Pomerantz, S. M., Nunez, A. A. & Bean, N. J. Female behavior is affected by male ultrasonic vocalizations in house mice. Physiol. Behav. 31, 91?96 (1983). 6685321 10.1016/0031-9384(83)90101-4 6685321 Sangiamo, D. T., Warren, M. R. & Neunuebel, J. P. Ultrasonic signals associated with different types of social behavior of mice. Nat. Neurosci. 23, 411?422 (2020). 32066980 7065962 10.1038/s41593-020-0584-z Neunuebel, J. P., Taylor, A. L., Arthur, B. J. & Egnor, S. E. Female mice ultrasonically interact with males during courtship displays. eLife 4, (2015). Kohl, J. & Dulac, C. Neural control of parental behaviors. Curr. Opin. Neurobiol. 49, 116?122 (2018). 29482085 6029232 10.1016/j.conb.2018.02.002 Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98, 31?48 (2018). 6034117 6034117 10.1016/j.neuron.2018.02.022 Yu, S., François, M., Huesing, C. & Münzberg, H. The hypothalamic preoptic area and body weight control. Neuroendocrinology 106, 187?194 (2018). 28772276 10.1159/000479875 28772276 Jürgens, U. The role of the periaqueductal grey in vocal behaviour. Behav. Brain Res. 62, 107?117 (1994). 7945960 10.1016/0166-4328(94)90017-5 7945960 Jürgens, U. The neural control of vocalization in mammals: a review. J. Voice 23, 1?10 (2009). 18207362 10.1016/j.jvoice.2007.07.005 18207362 Bandler, R. & Shipley, M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 17, 379?389 (1994). 7817403 10.1016/0166-2236(94)90047-7 7817403 Inagaki, H. K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325?332 (2014). 24363022 10.1038/nmeth.2765 24363022 20301323 NBK1144 University of Washington, Seattle Seattle (WA) GeneReviews® 1993 1993 2021 Adam Margaret P MP Ardinger Holly H HH Pagon Roberta A RA Wallace Stephanie E SE Bean Lora JH LJH Mirzaa Ghayda G Amemiya Anne A Internet Angelman SyndromeLinkIT
Chen J, Markowitz JE, Lilascharoen V, Taylor S, Sheurpukdi P, Keller JA, Jensen JR, Lim BK, Datta SR, Stowers L, , Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, , Dagli AI, Mathews J, Williams CA
Nature, 2021 May Nature Nature Flexible scaling and persistence of social vocal communication. 108-113 10.1038/s41586-021-03403-8 Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication. Chen Jingyi J Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA. Markowitz Jeffrey E JE Department of Neurobiology, Harvard Medical School, Boston, MA, USA. Lilascharoen Varoth V http://orcid.org/0000-0002-9732-9966 Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA. Taylor Sandra S Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Sheurpukdi Pete P Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Keller Jason A JA http://orcid.org/0000-0001-9839-7293 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. Jensen Jennifer R JR http://orcid.org/0000-0002-3347-8911 Department of Neuroscience, Scripps Research, La Jolla, CA, USA. Lim Byung Kook BK http://orcid.org/0000-0002-3766-5415 Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. Datta Sandeep Robert SR http://orcid.org/0000-0002-8068-3862 Department of Neurobiology, Harvard Medical School, Boston, MA, USA. Stowers Lisa L http://orcid.org/0000-0002-4403-1269 Department of Neuroscience, Scripps Research, La Jolla, CA, USA. stowers@scripps.edu. eng Journal Article 2021 03 31 England Nature 0410462 0028-0836 IM 2020 03 20 2021 02 26 2021 4 2 6 0 2021 4 2 6 0 2021 4 1 6 20 ppublish 33790464 10.1038/s41586-021-03403-8 10.1038/s41586-021-03403-8 Bachorowski, J. A. & Owren, M. J. Not all laughs are alike: voiced but not unvoiced laughter readily elicits positive affect. Psychol. Sci. 12, 252?257 (2001). 11437310 10.1111/1467-9280.00346 11437310 Darwin, C. & Prodger, P. The Expression of the Emotions in Man and Animals 3rd edn (Harper Collins, 1998). Esposito, G., Nakazawa, J., Venuti, P. & Bornstein, M. H. Judgment of infant cry: the roles of acoustic characteristics and sociodemographic characteristics. Jpn. Psychol. Res. 57, 126?134 (2015). 29681650 10.1111/jpr.12072 29681650 Holy, T. E. & Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3, e386 (2005). 16248680 1275525 10.1371/journal.pbio.0030386 Whitney, G., Alpern, M., Dizinno, G. & Horowitz, G. Female odors evoke ultrasounds from male mice. Anim. Learn. Behav. 2, 13?18 (1974). 4468889 10.3758/BF03199109 4468889 Keller, J. A. et al. Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat. Neurosci. 21, 1229?1238 (2018). 30104734 6119086 10.1038/s41593-018-0204-3 Brainard, M. S. & Doupe, A. J. Translating birdsong: songbirds as a model for basic and applied medical research. Annu. Rev. Neurosci. 36, 489?517 (2013). 23750515 4130661 10.1146/annurev-neuro-060909-152826 Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50?54 (2019). 31604300 10.1126/science.aax0287 31604300 Gao, S. C., Wei, Y. C., Wang, S. R. & Xu, X. H. Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice. Neurosci. Bull. 35, 697?708 (2019). 30900143 6616611 10.1007/s12264-019-00365-w Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258?263 (2020). Michael, V. et al. Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization. eLife 9, e63493 (2020). 33372655 7793624 10.7554/eLife.63493 Fang, Y. Y., Yamaguchi, T., Song, S. C., Tritsch, N. X. & Lin, D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192?207.e110 (2018). 29621487 5890946 10.1016/j.neuron.2018.02.019 Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018). 30385464 6482113 10.1126/science.aau5324 Maggio, J. C. & Whitney, G. Ultrasonic vocalizing by adult female mice (Mus musculus). J. Comp. Psychol. 99, 420?436 (1985). 4075780 10.1037/0735-7036.99.4.420 Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET-Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465?485.e465, (2017). 28472651 5939957 10.1016/j.neuron.2017.04.005 Arriaga, G., Zhou, E. P. & Jarvis, E. D. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS ONE 7, e46610 (2012). 23071596 3468587 10.1371/journal.pone.0046610 Tschida, K. et al. A specialized neural circuit gates social vocalizations in the mouse. Neuron 103, 459?472.e454 (2019). 31204083 31204083 10.1016/j.neuron.2019.05.025 Kohl, J. et al. Functional circuit architecture underlying parental behaviour. Nature 556, 326?331 (2018). 29643503 5908752 10.1038/s41586-018-0027-0 Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206?212 (2016). 27279213 10.1038/nature17996 Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567?631 (1999). 10202549 10.1146/annurev.neuro.22.1.567 10202549 Sainburg, T., Theilman, B., Thielk, M. & Gentner, T. Q. Parallels in the sequential organization of birdsong and human speech. Nat. Commun. 10, 3636 (2019). 31406118 6690877 10.1038/s41467-019-11605-y Chabout, J., Sarkar, A., Dunson, D. B. & Jarvis, E. D. Male mice song syntax depends on social contexts and influences female preferences. Front. Behav. Neurosci. 9, 76 (2015). 25883559 4383150 10.3389/fnbeh.2015.00076 Castellucci, G. A., Calbick, D. & McCormick, D. The temporal organization of mouse ultrasonic vocalizations. PLoS ONE 13, e0199929 (2018). 30376572 6207298 10.1371/journal.pone.0199929 Guo, Z. & Holy, T. E. Sex selectivity of mouse ultrasonic songs. Chem. Senses 32, 463?473 (2007). 17426047 10.1093/chemse/bjm015 17426047 Nyby, J., Wysocki, C. J., Whitney, G., Dizinno, G. & Schneider, J. Elicitation of male mouse ultrasonic vocalizations: I. Urinary cues. J. Comp. Physiol. Psychol. 93, 957?975 (1979). 10.1037/h0077623 Sirotin, Y. B., Costa, M. E. & Laplagne, D. A. Rodent ultrasonic vocalizations are bound to active sniffing behavior. Front. Behav. Neurosci. 8, 399 (2014). 25477796 4235378 10.3389/fnbeh.2014.00399 Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319?1328 (2005). 16158066 10.1038/nn1542 16158066 Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172?177 (2012). 22801496 3416931 10.1038/nature11270 Letzkus, J. J., Wolff, S. B. & Lüthi, A. Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88, 264?276 (2015). 26494276 10.1016/j.neuron.2015.09.024 26494276 Chabout, J., Jones-Macopson, J. & Jarvis, E. D. Eliciting and analyzing male mouse ultrasonic vocalization (USV) songs. J. Vis. Exp. https://doi.org/10.3791/54137 (2017). Yin, X. et al. Maternal deprivation influences pup ultrasonic vocalizations of C57BL/6J mice. PLoS ONE 11, e0160409 (2016). 27552099 4994965 10.1371/journal.pone.0160409 Cetin, A. & Callaway, E. M. Optical control of retrogradely infected neurons using drug-regulated ?TLoop? lentiviral vectors. J. Neurophysiol. 111, 2150?2159 (2014). 24572099 4044340 10.1152/jn.00495.2013 Knowland, D. et al. Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170, 284?297 (2017). 28689640 5621481 10.1016/j.cell.2017.06.015 Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325?328 (2016). 26878381 5717315 10.1038/nmeth.3770 Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596?600 (2014). 25043046 25043046 10.1038/nature13321 Hurst, J. L. & Beynon, R. J. Scent wars: the chemobiology of competitive signalling in mice. BioEssays 26, 1288?1298 (2004). 15551272 10.1002/bies.20147 15551272 Nyby, J. et al. Stimuli for male mouse (Mus musculus) ultrasonic courtship vocalizations: presence of female chemosignals and/or absence of male chemosignals. J. Comp. Physiol. Psychol. 95, 623?629 (1981). 7276284 10.1037/h0077794 7276284 Reynolds, E. Urination as a social response in mice. Nature 234, 481?483 (1971). 4944197 10.1038/234481a0 4944197 Gordon-Fennell, A. G. et al. The lateral preoptic area: a novel regulator of reward seeking and neuronal activity in the ventral tegmental area. Front. Neurosci. 13, 1433 (2020). 32009893 6978721 10.3389/fnins.2019.01433 Hileman, S. M., McManus, C. J., Goodman, R. L. & Jansen, H. T. Neurons of the lateral preoptic area/rostral anterior hypothalamic area are required for photoperiodic inhibition of estrous cyclicity in sheep. Biol. Reprod. 85, 1057?1065 (2011). 21816852 3197919 10.1095/biolreprod.111.092031 Ono, T., Nakamura, K., Nishijo, H. & Fukuda, M. Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. J. Neurophysiol. 56, 63?79 (1986). 3746401 10.1152/jn.1986.56.1.63 Osaka, T. et al. Lateral preoptic neurons inhibit thirst in the rat. Brain Res. Bull. 31, 135?144 (1993). 8453484 10.1016/0361-9230(93)90020-C 8453484 Szymusiak, R., Gvilia, I. & McGinty, D. Hypothalamic control of sleep. Sleep Med. 8, 291?301 (2007). 17468047 10.1016/j.sleep.2007.03.013 17468047 Pomerantz, S. M., Nunez, A. A. & Bean, N. J. Female behavior is affected by male ultrasonic vocalizations in house mice. Physiol. Behav. 31, 91?96 (1983). 6685321 10.1016/0031-9384(83)90101-4 6685321 Sangiamo, D. T., Warren, M. R. & Neunuebel, J. P. Ultrasonic signals associated with different types of social behavior of mice. Nat. Neurosci. 23, 411?422 (2020). 32066980 7065962 10.1038/s41593-020-0584-z Neunuebel, J. P., Taylor, A. L., Arthur, B. J. & Egnor, S. E. Female mice ultrasonically interact with males during courtship displays. eLife 4, (2015). Kohl, J. & Dulac, C. Neural control of parental behaviors. Curr. Opin. Neurobiol. 49, 116?122 (2018). 29482085 6029232 10.1016/j.conb.2018.02.002 Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98, 31?48 (2018). 6034117 6034117 10.1016/j.neuron.2018.02.022 Yu, S., François, M., Huesing, C. & Münzberg, H. The hypothalamic preoptic area and body weight control. Neuroendocrinology 106, 187?194 (2018). 28772276 10.1159/000479875 28772276 Jürgens, U. The role of the periaqueductal grey in vocal behaviour. Behav. Brain Res. 62, 107?117 (1994). 7945960 10.1016/0166-4328(94)90017-5 7945960 Jürgens, U. The neural control of vocalization in mammals: a review. J. Voice 23, 1?10 (2009). 18207362 10.1016/j.jvoice.2007.07.005 18207362 Bandler, R. & Shipley, M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 17, 379?389 (1994). 7817403 10.1016/0166-2236(94)90047-7 7817403 Inagaki, H. K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325?332 (2014). 24363022 10.1038/nmeth.2765 24363022 20301323 NBK1144 University of Washington, Seattle Seattle (WA) GeneReviews® 1993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  Why is the Joker Laughing? Clinical Features for the Differential Diagnosis of Pathological Laughter.LinkIT
Merchán-Del-Hierro X, Fernandez-Boccazzi J, Gatto EM
Academic psychiatry : the journal of the American Association of Directors of Psychiatric Residency Training and the Association for Academic Psychiatry, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

6.  Facial expressions can be categorized along the upper-lower facial axis, from a perceptual perspective.LinkIT
Ma C, Guo N, Davies F, Hou Y, Guo S, Zhu X
Attention, perception & psychophysics, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

7.  Involuntary Emotional Expression Disorder in a Patient With Toluene Leukoencephalopathy.LinkIT
Ramirez-Bermudez J, Perez-Esparza R, Flores J, Leon-Ortiz P, Corona T, Restrepo-Martínez M
Revista colombiana de psiquiatria, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

8.  Co-cultivation of diazotrophic terrestrial cyanobacteria and Arabidopsis thaliana.LinkIT
Strieth D, Di Nonno S, Stiefelmaier J, Kollmen J, Geib D, Ulber R
Engineering in life sciences, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

9.  [Pseudobulbar affect in stroke patients in Argentina].LinkIT
Alet M, Segamarchi C, Claverie S, Gonzálezy L, Lepera S, Rey R
Vertex (Buenos Aires, Argentina), 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0



1