 1. Structural Diversity in Galactans From Red Seaweeds and Its Influence on Rheological Properties.
Ciancia M, Matulewicz MC, Tuvikene R Frontiers in plant science, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
2. The Organelle Genomes in the Photosynthetic Red Algal Parasite Pterocladiophila hemisphaerica (Florideophyceae, Rhodophyta) Have Elevated Substitution Rates and Extreme Gene Loss in the Plastid Genome.
Preuss M, Verbruggen H, Zuccarello GC Journal of phycology, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
3. Cellular Responses of Gelidium floridanum (Gelidiales, Rhodophyta) Tetraspores Under Heat Wave and Copper Pollution.
Kreusch M, Poltronieri E, Bouvie F, Pereira DT, Batista D, Ramlov F, Maraschin M, Bouzon ZL, Simioni C Journal of phycology J Phycol Cellular Responses of Gelidium floridanum (Gelidiales, Rhodophyta) Tetraspores Under Heat Wave and Copper Pollution. 1394-1400 10.1111/jpy.12921 Spore settlement and development are bottlenecks for resilience of habitat-forming macroalgal species. These processes are directly related to temperature, a global stressor protagonist of ocean warming. The toxic effects of local pollutants such as copper may be worsened under a global warming scenario. Therefore, in this paper, we investigated the effects of increased temperature combined with elevated concentrations of copper on the viability, photosynthetic pigments, and ultrastructure of Gelidium floridanum tetraspores. Tetraspores were cultivated on slides with sterilized seawater or seawater enriched with CuCl2 , and incubated under 24°C or 30°C for 24 h. Tetraspores cultivated with copper 3.0 ?M under 30°C had lower viability. Both temperature and copper had a significant effect on phycocyanin and phycoerythrin concentrations. Samples cultivated with copper under 30°C presented a heavily altered cellular structure, with vesicles throughout the cytoplasm, chloroplasts with altered structure and cells with degenerated cytoplasm and cell walls. Our findings show that temperature and copper significantly affect the viability, photosynthetic pigments, and ultrastructure of G. floridanum tetraspores, presenting an additive interaction for the physiology of this seaweed's early stages. © 2019 Phycological Society of America. Kreusch Marianne M 0000-0001-7110-2504 Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Poltronieri Elisa E 0000-0002-5252-0812 Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Bouvie Fernanda F Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Pereira Débora T DT 0000-0002-2330-8812 Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Batista Deonir D Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Ramlov Fernanda F Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Maraschin Marcelo M Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Bouzon Zenilda L ZL Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. Simioni Carmen C Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476, Florianópolis, Santa Catarina, Brazil. eng Journal Article Research Support, Non-U.S. Gov't 2019 10 08 United States J Phycol 9882935 0022-3646 789U1901C5 Copper IM Copper Hot Temperature Photosynthesis Rhodophyta Seawater Temperature copper heat waves photosynthetic pigments seaweeds temperature tetraspores 2019 01 24 2019 08 29 2019 9 14 6 0 2020 5 10 6 0 2019 9 14 6 0 ppublish 31519045 10.1111/jpy.12921 References, 2019 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
4. Contrasting patterns of genetic structure and phylogeography in the marine agarophytes Gelidiophycus divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Asia.
Boo GH, Qiu YX, Kim JY, Ang PO, Bosch S, De Clerck O, He P, Higa A, Huang B, Kogame K, Liu SL, van Nguyen T, Suda S, Terada R, Miller KA, Boo SM Journal of phycology, 2019 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
5. Phylogenomics and multigene phylogenies decipher two new cryptic marine algae from California, Gelidium gabrielsonii and G. kathyanniae (Gelidiales, Rhodophyta).
Boo GH, Hughey JR Journal of phycology, 2019 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
6. Ocean warming and copper pollution: implications for metabolic compounds of the agarophyte Gelidium floridanum (Gelidiales, Rhodophyta).
Kreusch M, Poltronieri E, Bouvie F, Batista D, Pereira DT, Ramlov F, Maraschin M, Bouzon ZL, Schmidt ÉC, Simioni C Journal of phycology, 2018 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
7. Phylogenetic relationships and biogeography of Ptilophora (Gelidiales, Rhodophyta) with descriptions of P. aureolusa, P. malagasya, and P. spongiophila from Madagascar.
Boo GH, Gall LL, Hwang IK, Miller KA, Boo SM Journal of phycology, 2018 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
8. Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta).
Paiano MO, Del Cortona A, Costa JF, Liu SL, Verbruggen H, De Clerck O, Necchi O Journal of phycology, 2018 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
9. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae.
Boo GH, Hughey JR, Miller KA, Boo SM Scientific reports, 2016 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
10. A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov.
Boo GH, Le Gall L, Miller KA, Freshwater DW, Wernberg T, Terada R, Yoon KJ, Boo SM Molecular phylogenetics and evolution, 2016 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
|