Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 470

Broader Terms:
   Bacteria regnum 
   Bacteroidetes 

More Specific:
   Flavobacteria bacterium 
   Flavobacteria endosymbiont coagulata 
   Flavobacteria symbiont otcospinosus 
   Flavobacteriales 
   Flavobacteroidales 
   Missing 
   environmental samples 
   unclassified 
 
 
Latest Articles on Flavobacteria from uBioRSS
Novel bacteria associated with Arctic seashore lichens have potential roles... - Latest Issue of Canadian Journal of Microbiology
Bacteria recovered from a high-altitude, tropical glacier in Venezuelan And... - Latest Issue of World Journal of Microbiology and ...


External Resources:

Did you mean: Flavobacter ?



1.  A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste.LinkIT
Urbanek AK, Rybak J, Wróbel M, Leluk K, Miro?czuk AM
Environmental pollution (Barking, Essex : 1987), 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Regulation of alginate catabolism involves a GntR family repressor in the marine flavobacterium Zobellia galactanivorans DsijT.LinkIT
Dudek M, Dieudonné A, Jouanneau D, Rochat T, Michel G, Sarels B, Thomas F
Nucleic acids research, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing.LinkIT
Capão A, Moreira-Filho P, Garcia M, Bitati S, Procópio L
Biotechnology letters, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages.LinkIT
Xue CX, Zhang H, Lin HY, Sun Y, Luo D, Huang Y, Zhang XH, Luo H
Environmental microbiology Environ. Microbiol. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. 10.1111/1462-2920.15065 Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd. Xue Chun-Xu CX College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. Zhang Hao H Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. Lin He-Yu HY College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Sun Ying Y Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. Luo Danli D Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. Huang Yongjie Y Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. Zhang Xiao-Hua XH https://orcid.org/0000-0002-7428-7775 College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Luo Haiwei H https://orcid.org/0000-0001-8452-6066 Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China. eng 3132809 Chinese University of Hong Kong 4053257 Chinese University of Hong Kong AoE/M-403/16 Hong Kong Research Grants Council Area of Excellence Scheme 14163917 Hong Kong Research Grants Council General Research Fund 41730530 National Natural Science Foundation of China 41776129 National Natural Science Foundation of China 91751202 National Natural Science Foundation of China 2018YFC0309800 National Key R&D Program of China Journal Article 2020 05 10 England Environ Microbiol 100883692 1462-2912 IM 2020 01 14 2020 05 05 2020 05 07 2020 5 12 6 0 2020 5 12 6 0 2020 5 12 6 0 aheadofprint 32390223 10.1111/1462-2920.15065 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Ecological effects of Ulva prolifera green tide on bacterial community structure in Qingdao offshore environment.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Qu T, Zhao X, Hao Y, Zhong Y, Guan C, Hou C, Tang X, Wang Y<br><font color=gray><i>Chemosphere, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Arandia-Gorostidi N, Alonso-Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N<br><font color=gray><i>Environmental microbiology Environ. Microbiol. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. 1381-1396 10.1111/1462-2920.14954 Heterotrophic bacteria associated with microphytoplankton, particularly those colonizing the phycosphere, are major players in the remineralization of algal-derived carbon. Ocean warming might impact dissolved organic carbon (DOC) uptake by microphytoplankton-associated bacteria with unknown biogeochemical implications. Here, by incubating natural seawater samples at three different temperatures, we analysed the effect of experimental warming on the abundance and C and N uptake activity of Rhodobacteraceae and Flavobacteria, two bacterial groups typically associated with microphytoplankton. Using a nano-scale secondary ion mass spectrometry (nanoSIMS) single-cell analysis, we quantified the temperature sensitivity of these two taxonomic groups to the uptake of algal-derived DOC in the microphytoplankton associated fraction with 13 C-bicarbonate and 15 N-leucine as tracers. We found that cell-specific 13 C uptake was similar for both groups (~0.42?fg C h-1 ?m-3 ), but Rhodobacteraceae were more active in 15 N-leucine uptake. Due to the higher abundance of Flavobacteria associated with microphytoplankton, this group incorporated fourfold more carbon than Rhodobacteraceae. Cell-specific 13 C uptake was influenced by temperature, but no significant differences were found for 15 N-leucine uptake. Our results show that the contribution of Flavobacteria and Rhodobacteraceae to C assimilation increased up to sixfold and twofold, respectively, with an increase of 3°C above ambient temperature, suggesting that warming may differently affect the contribution of distinct copiotrophic bacterial taxa to carbon cycling. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd. Arandia-Gorostidi Nestor N https://orcid.org/0000-0002-9370-2065 Department of Earth System Science, Stanford University, Green Earth Sciences Building, 367 Panama St., Room 129, Stanford, CA, 94305-4216, USA. Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Av. Príncipe de Asturias, 70 bis 33212, Gijón, Asturias, Spain. Alonso-Sáez Laura L https://orcid.org/0000-0003-1757-4767 AZTI, Marine Research Unit, Txatxarramendi Irla s/n, 48395, Sukarrieta, Bizkaia, Spain. Stryhanyuk Hryhoriy H Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany. Richnow Hans H HH Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany. Morán Xosé Anxelu G XAG https://orcid.org/0000-0002-9823-5339 Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, 23955, Thuwal, Saudi Arabia. Musat Niculina N Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany. eng Journal Article 2020 03 01 England Environ Microbiol 100883692 1462-2912 IM 2019 07 24 2020 01 25 2020 2 25 6 0 2020 2 25 6 0 2020 2 25 6 0 ppublish 32090403 10.1111/1462-2920.14954 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Differential visible spectral influence on carbon metabolism in heterotrophic marine <b>flavobacteria</b>.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hameed A, Lai WA, Shahina M, Stothard P, Young LS, Lin SY, Sridhar KR, Young CC<br><font color=gray><i>FEMS microbiology ecology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a <i>Synechococcus</i> Culture.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Zheng Q, Wang Y, Lu J, Lin W, Chen F, Jiao N<br><font color=gray><i>mBio, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Response of the Litopenaeus vananmei intestinal bacteria and antioxidant system to rearing density and exposure to Vibrio paraheamolyticus E1.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Wang Y, Liu M, Wang B, Jiang K, Wang M, Wang L<br><font color=gray><i>Journal of invertebrate pathology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Diversity and Host Interactions Among Virulent and Temperate Baltic Sea <i>Flavobacterium</i> Phages.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Nilsson E, Bayfield OW, Lundin D, Antson AA, Holmfeldt K<br><font color=gray><i>Viruses, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Flavobacteria&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>