Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 396

Broader Terms:
   Durvilledoris 
 
 
Latest Articles on Durvilledoris pusilla from uBioRSS
Durvilledoris pusilla (Bergh, 1874) - WoRMS latest additions


External Resources:



1.  Changes in hippocampal astrocyte morphology of Ruddy turnstone (Arenaria interpres) during the wintering period at the mangroves of Amazon River estuary.LinkIT
da Costa ER, Henrique EP, da Silva JB, Pereira PDC, de Abreu CC, Fernandes TN, Magalhães NGM, de Jesus Falcão da Silva A, Guerreiro LCF, Diniz CG, Diniz CWP, Diniz DG
Journal of chemical neuroanatomy, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Eco-assessment of West Mediterranean basin's rivers (Turkey) using diatom metrics and multivariate approaches.LinkIT
Çelekli A, Lekesiz Ö
Environmental science and pollution research international, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Testing the adaptive advantage of a threatened species over an invasive species using a stochastic population model.LinkIT
Brown TR, Todd CR, Hale R, Swearer SE, Coleman RA
Journal of environmental management, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds.LinkIT
Henrique EP, de Oliveira MA, Paulo DC, Pereira PDC, Dias C, de Siqueira LS, de Lima CM, Miranda DA, do Rego PS, Araripe J, de Melo MAD, Diniz DG, de Morais Magalhães NG, Sherry DF, Picanço Diniz CW, Diniz CG
The European journal of neuroscience Eur. J. Neurosci. Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds. 10.1111/ejn.14781 Semipalmated sandpiper (Calidris pusilla) migration to the Southern Hemisphere includes a 5-day non-stop flight over the Atlantic Ocean, whereas semipalmated plover (Charadrius semipalmatus) migration, to the same area, is largely over land, with stopovers for feeding and rest. We compared the number and 3D morphology of hippocampal astrocytes of Ch. semipalmatus before and after autumnal migration with those of C. pusilla to test the hypothesis that the contrasting migratory flights of these species could differentially shape hippocampal astrocyte number and morphology. We captured individuals from both species in the Bay of Fundy (Canada) and in the coastal region of Bragança (Brazil) and processed their brains for selective GFAP immunolabeling of astrocytes. Hierarchical cluster analysis of astrocyte morphological features distinguished two families of morphological phenotypes, named type I and type II, which were differentially affected after migratory flights. Stereological counts of hippocampal astrocytes demonstrated that the number of astrocytes decreased significantly in C. pusilla, but did not change in Ch. semipalmatus. In addition, C. pusilla and Ch. semipalmatus hippocampal astrocyte morphological features were differentially affected after autumnal migration. We evaluated whether astrocyte morphometric variables were influenced by phylogenetic differences between C. pusilla and Ch. semipalmatus, using phylogenetically independent contrast approach, and phylogenetic trees generated by nuclear and mitochondrial markers. Our findings suggest that phylogenetic differences do not explain the results and that contrasting long-distance migratory flights shape plasticity of type I and type II astrocytes in different ways, which may imply distinct physiological roles for these cells. © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Henrique Ediely Pereira EP Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. de Oliveira Marcus Augusto MA Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Paulo Dario Carvalho DC Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Pereira Patrick Douglas Corrêa PDC Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. Dias Cleyssian C Curso de Pós-Graduação em Zoologia, Museu Paraense Emílio Goeldi, Universidade Federal do Pará, Belém, Pará, Brazil. de Siqueira Lucas Silva LS Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. de Lima Camila Mendes CM Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Miranda Diego de Almeida DA Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. do Rego Péricles Sena PS Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil. Araripe Juliana J Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil. de Melo Mauro André Damasceno MAD Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. Diniz Daniel Guerreiro DG Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Instituto Evandro Chagas, Laboratório de Miscroscopia Eletrônica, Belém, Pará, Brazil. de Morais Magalhães Nara Gyzely NG Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. Sherry David Francis DF Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada. Picanço Diniz Cristovam Wanderley CW Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. Diniz Cristovam Guerreiro CG Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Pará, Brazil. eng Edital Universal Grant number 440722/2014-4 Brazilian Research Council (CNPq) Programa de Apoio a Núcleos Emergentes - Centro de Piscicultura do IFPA Campus Bragança Fundação Amazônia Paraense de Amparo à Pesquisa (FAPESPA) Canada-Brazil Awards - Joint Research Projects ( The Canadian Bureau for International Education (CBIE) Instituto Brasileiro de Neurociências (IBNnet) Financiadora de Estudos e Projetos (FINEP) Natural Sciences and Engineering Research Council of Canada Editais APIPA 2018 e 2019 Instituto Federal do Pará (IFPA) Programa Ciências do Mar II Edital 2200/2014 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Journal Article 2020 05 13 France Eur J Neurosci 8918110 0953-816X IM Calidris pusilla Charadrius semipalmatus Nearctic birds astrocyte morphology hippocampus migration non-stop flight semipalmated plover semipalmated sandpiper shorebird transatlantic flight 2019 10 26 2020 04 26 2020 05 07 2020 5 15 6 0 2020 5 15 6 0 2020 5 15 6 0 aheadofprint 32406131 10.1111/ejn.14781 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A genoscape-network model for conservation prioritization in a migratory bird.</ArticleTitle> <ELocationID EIdType="doi" ValidYN="Y">10.1111/cobi.13536</ELocationID> <Abstract> <AbstractText>Migratory animals are declining worldwide and coordinated conservation efforts are needed to reverse current trends. We devised a novel genoscape-network model that combines genetic analyses with species distribution modeling and demographic data to overcome challenges with conceptualizing alternative risk factors in migratory species across their full annual cycle. We applied our method to the long distance, Neotropical migratory bird, Wilson's Warbler (Cardellina pusilla). Despite a lack of data from some wintering locations, we demonstrated how the results can be used to help prioritize conservation of breeding and wintering areas. For example, we showed that when genetic, demographic, and network modeling results were considered together it became clear that conservation recommendations will differ depending on whether the goal is to preserve unique genetic lineages or the largest number of birds per unit area. More specifically, if preservation of genetic lineages is the goal, then limited resources should be focused on preserving habitat in the California Sierra, Basin Rockies, or Coastal California, where the 3 most vulnerable genetic lineages breed, or in western Mexico, where 2 of the 3 most vulnerable lineages overwinter. Alternatively, if preservation of the largest number of individuals per unit area is the goal, then limited conservation dollars should be placed in the Pacific Northwest or Central America, where densities are estimated to be the highest. Overall, our results demonstrated the utility of adopting a genetically based network model for integrating multiple types of data across vast geographic scales and better inform conservation decision-making for migratory animals.</AbstractText> <CopyrightInformation>© 2020 Society for Conservation Biology.</CopyrightInformation> </Abstract> <AuthorList CompleteYN="Y"> <Author ValidYN="Y"> <LastName>Ruegg</LastName> <ForeName>Kristen C</ForeName> <Initials>KC</Initials> <Identifier Source="ORCID">https://orcid.org/0000-0001-5579-941X</Identifier> <AffiliationInfo> <Affiliation>Biology Department, Colorado State University, 251 W. Pitkins St, Fort Collins, CO, 80521, U.S.A.</Affiliation> </AffiliationInfo> <AffiliationInfo> <Affiliation>Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A.</Affiliation> </AffiliationInfo> </Author> <Author ValidYN="Y"> <LastName>Harrigan</LastName> <ForeName>Ryan J</ForeName> <Initials>RJ</Initials> <AffiliationInfo> <Affiliation>Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A.</Affiliation> </AffiliationInfo> </Author> <Author ValidYN="Y"> <LastName>Saracco</LastName> <ForeName>James F</ForeName> <Initials>JF</Initials> <AffiliationInfo> <Affiliation>The Institute for Bird Populations, PO Box 1346, Point Reyes Station, CA, 94956, U.S.A.</Affiliation> </AffiliationInfo> </Author> <Author ValidYN="Y"> <LastName>Smith</LastName> <ForeName>Thomas B</ForeName> <Initials>TB</Initials> <AffiliationInfo> <Affiliation>Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A.</Affiliation> </AffiliationInfo> <AffiliationInfo> <Affiliation>Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, U.S.A.</Affiliation> </AffiliationInfo> </Author> <Author ValidYN="Y"> <LastName>Taylor</LastName> <ForeName>Caz M</ForeName> <Initials>CM</Initials> <AffiliationInfo> <Affiliation>Department of Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs Center, New Orleans, LA, 70118, U.S.A.</Affiliation> </AffiliationInfo> </Author> </AuthorList> <Language>eng</Language> <GrantList CompleteYN="Y"> <Grant> <GrantID>EPC-15-043</GrantID> <Agency>California Energy Commission</Agency> <Country/> </Grant> <Grant> <GrantID>WW-202R-17</GrantID> <Agency>National Geographic Society</Agency> <Country/> </Grant> </GrantList> <PublicationTypeList> <PublicationType UI="D016428">Journal Article</PublicationType> </PublicationTypeList> <ArticleDate DateType="Electronic"> <Year>2020</Year> <Month>05</Month> <Day>11</Day> </ArticleDate> </Article> <MedlineJournalInfo> <Country>United States</Country> <MedlineTA>Conserv Biol</MedlineTA> <NlmUniqueID>9882301</NlmUniqueID> <ISSNLinking>0888-8892</ISSNLinking> </MedlineJournalInfo> <CitationSubset>IM</CitationSubset> <OtherAbstract Type="Publisher" Language="spa"> <AbstractText>Un Modelo de Redes de Panorama Poblacional para la Priorización de la Conservación de un Ave Migratoria Resumen Los animales migratorios están pasando por una declinación mundial y se requieren esfuerzos coordinados de conservación para revertir las tendencias actuales. Diseñamos un modelo novedoso de redes de panorama poblacional que combina el análisis genético con el modelado de la distribución de especies y los datos demográficos para sobreponerse a los obstáculos con la conceptualización de los factores alternativos de riesgo en las especies migratorias durante su ciclo anual completo. Aplicamos nuestro método al chipe de corona negra (Cardellina pusilla), un ave migratoria neotropical que recorre largas distancias. A pesar de la falta de datos de algunas localidades de invernación, mostramos cómo pueden usarse los resultados para ayudar a priorizar la conservación de las áreas de reproducción y de invernación. Por ejemplo, mostramos que cuando se consideraron en conjunto los resultados del modelado genético, demográfico y de redes queda claro que las recomendaciones de conservación diferirán dependiendo de si el objetivo es preservar linajes genéticos únicos o el mayor número de aves por unidad de área. Más específicamente, si el objetivo es la conservación de los linajes genéticos, entonces los recursos limitados deberían enfocarse en preservar el hábitat en la Sierra de California, la Cuenca de las Rocallosas, la costa de California (lugares en donde se reproducen los tres linajes genéticos más vulnerables) o en el oeste de México (en donde dos de los tres linajes más vulnerables pasan el invierno). Alternativamente, si el objetivo es la conservación del mayor número de individuos por unidad de área, entonces el financiamiento limitado debería aplicarse en el noroeste del Pacífico o en América Central, en donde se estima que las densidades poblacionales son las más altas. En general, nuestros resultados demostraron la utilidad de adoptar un modelo de redes basadas en la genética para la integración de datos a lo largo de escalas geográficas amplias y para informar de mejor manera la toma de decisiones de conservación para los animales migratorios.</AbstractText> </OtherAbstract> <OtherAbstract Type="Publisher" Language="chi"> <AbstractText>????????????????, ??????????????????????????????????????, ??????????????????????, ?????????????????????????????????????????????????--????? (Cardellina pusilla)?????????????, ????????????????????????????????, ????????????????????, ??????, ?????????--?????????????????????????????, ????????????????, ????????????, ??????????????????????????????????????, ????????????????????????, ???????????, ????????????????????????, ???????????????????, ??????????????????????, ?????????????????, ?????????, ??????????????????????????????????, ???????????????????????: ???; ??: ????.</AbstractText> </OtherAbstract> <KeywordList Owner="NOTNLM"> <Keyword MajorTopicYN="N">aves</Keyword> <Keyword MajorTopicYN="N">birds</Keyword> <Keyword MajorTopicYN="N">conservation planning</Keyword> <Keyword MajorTopicYN="N">evolución</Keyword> <Keyword MajorTopicYN="N">evolution</Keyword> <Keyword MajorTopicYN="N">genetics</Keyword> <Keyword MajorTopicYN="N">genética</Keyword> <Keyword MajorTopicYN="N">migratorio</Keyword> <Keyword MajorTopicYN="N">migratory</Keyword> <Keyword MajorTopicYN="N">planeación de la conservación</Keyword> <Keyword MajorTopicYN="N">????</Keyword> <Keyword MajorTopicYN="N">??</Keyword> <Keyword MajorTopicYN="N">??</Keyword> <Keyword MajorTopicYN="N">???</Keyword> <Keyword MajorTopicYN="N">??</Keyword> </KeywordList> </MedlineCitation> <PubmedData> <History> <PubMedPubDate PubStatus="received"> <Year>2019</Year> <Month>03</Month> <Day>01</Day> </PubMedPubDate> <PubMedPubDate PubStatus="revised"> <Year>2020</Year> <Month>03</Month> <Day>02</Day> </PubMedPubDate> <PubMedPubDate PubStatus="accepted"> <Year>2020</Year> <Month>03</Month> <Day>04</Day> </PubMedPubDate> <PubMedPubDate PubStatus="pubmed"> <Year>2020</Year> <Month>5</Month> <Day>12</Day> <Hour>6</Hour> <Minute>0</Minute> </PubMedPubDate> <PubMedPubDate PubStatus="medline"> <Year>2020</Year> <Month>5</Month> <Day>12</Day> <Hour>6</Hour> <Minute>0</Minute> </PubMedPubDate> <PubMedPubDate PubStatus="entrez"> <Year>2020</Year> <Month>5</Month> <Day>12</Day> <Hour>6</Hour> <Minute>0</Minute> </PubMedPubDate> </History> <PublicationStatus>aheadofprint</PublicationStatus> <ArticleIdList> <ArticleId IdType="pubmed">32391608</ArticleId> <ArticleId IdType="doi">10.1111/cobi.13536</ArticleId> </ArticleIdList> <ReferenceList> <Title>Literature Cited Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E. 2004. Variation in climate warming along the migration route uncouples arrival and breeding dates. Global Change Biology 10:1610-1617. Attard CR, Beheregaray LB, Möller LM. 2016. Towards population-level conservation in the critically endangered Antarctic blue whale: the number and distribution of their populations. Scientific Reports 6:22291. Bay R, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 2018. Genomic signals of selection predict climate-driven population declines. Science 359:83-89. Bridge ES, Kelly JF, Contina A, Gabrielson RM, MacCurdy RB, Winkler DW. 2013. Advances in tracking small migratory birds: a technical review of light-level geolocation. Journal of Field Ornithology 84:121-137. Brotons L, Thuiller W, Araújo MB and Hirzel AH. 2004. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437-448. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652-655. Charmantier A, Gienapp P. 2014. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications 7:15-28. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026. Elith J, et al. 2011. A statistical explanation of MaxEnt for ecologists. Diversity & Distributions 17:43-57. Faaborg J, et al. 2010. Conserving migratory land birds in the New World: Do we know enough? Ecological Applications 20:398-418. Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecology Letters 18:1-16. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. 2012. Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution 27:489-496. Garner A, Rachlow JL, Hicks JF. 2005. Patterns of genetic diversity and its loss in mammalian populations. Conservation Biology 19:1215-1221. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography 24:276-292. Johnston A, Fink D, Reynolds MD, Hochachka WM, Sullivan BL, Bruns NE, Hallstein E, Merrifield MS, Matsumoto S, Kelling S. 2015. Abundance models improve spatial and temporal prioritization of conservation resources. Ecological Applications 25:1749-1756. Kellner K 2017. JagsUI: a wrapper around ?rjags? to streamline ?jags? analyse. Available from https://cran.r-project.org/package=jagsUI (accessed September 2019). Knight SM, Bradley DW, Clark RG, Gow EA, Bélisle M, Berzins LL, Blake T, Bridge ES, Burke L, Dawson RD. 2018. Constructing and evaluating a continent-wide migratory songbird network across the annual cycle. Ecological Monographs 88:445-460. Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM. 2015. A call for full annual cycle research in animal ecology. Biology Letters 11:20150552. Martin TG, Chadès I, Arcese P, Marra PP, Possingham HP, Norris DR. 2007. Optimal conservation of migratory species. PLOS ONE 2:e751. Marzluff, J M., R Sallabanks, eds. 1998. Avian conservation: research and management. Island Press, Washington, D.C. Moritz C 1994. Defining ?evolutionary significant units? for conservation. Trends in Ecology & Evolution 9:373-375. Palsbøll PJ, Berube M, Allendorf FW. 2007. Identification of management units using population genetic data. Trends in Ecology & Evolution 22:11-16. Pecl GT, et al. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:1-9. Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of Maxent. Ecography 40:887-893. Phillips SJ, Dudík M, Schapire RE. 2019. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed December 2019). Plummer M 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Page 125 in Proceedings of the 3rd international workshop on distributed statistical computing. R Foundation for Statistical Computing, Vienna. Procházka P, Hahn S, Rolland S, van der Jeugd H, Csörg? T, Jiguet F, Mokwa T, Liechti F, Vangeluwe D, Korner-Nievergelt F. 2017. Delineating large-scale migratory connectivity of reed warblers using integrated multistate models. Diversity and Distributions 23:27-40. Purvis A, Hector A. 2000. Getting the measure of biodiversity. Nature 405:212. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Redding DW and Ø. Mooers A. 2006. Incorporating evolutionary measures into conservation prioritization. Conservation Biology 20:1670-1678. Ridgely R, Allnutt T, Brooks T, McNicol D, Mehlman D, Young B, Zook J. 2003. Digital distribution maps of the birds of the Western Hemisphere. Version 2.1, NatureServe, Arlington, Virginia. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M. 2019. Decline of the North American avifauna. Science 366:120-124. Royle JA, Nichols JD, Kéry M. 2005. Modelling occurrence and abundance of species when detection is imperfect. Oikos 110:353-359. Ruegg K, Anderson EC, Paxton KL, Apkenas V, Lao S, Siegel RB, DeSante DF, Moore F, Smith TB. 2014. Mapping migration in a songbird using high-resolution genetic markers. Molecular Ecology 23:5726-5739. Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ, Whitfield M, Paxton EH, Smith TB. 2018. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecology Letters 21:1085-1096. Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA. 2014. Conserving mobile species. Frontiers in Ecology and the Environment 12:395-402. Rushing CS, Ryder TB, Scarpignato AL, Saracco JF, Marra PP. 2016. Using demographic attributes from long-term monitoring data to delineate natural population structure. Journal of Applied Ecology 53:491-500. Sauer JR, Link WA. 2011. Analysis of the North American breeding bird survey using hierarchical models. The Auk 128:87-98. Sauer JR, Pardieck KL, Ziolkowski Jr. DJ, Smith AC, Hudson M-AR, Rodriguez V, Berlanga H, Niven DK, Link WA. 2017. The first 50 years of the North American Breeding Bird Survey. The Condor 119:576-593. Sheehy J, Taylor CM, McCann KS, Norris DR. 2010. Optimal conservation planning for migratory animals: integrating demographic information across seasons. Conservation Letters 3:192-202. Small-Lorenz SL, Culp LA, Ryder TB, Will TC, Marra PP. 2013. A blind spot in climate change vulnerability assessments. Nature Climate Change 3:91-93. Smith TB, Kinnison MT, Strauss SY, Fuller TL, Carroll SP. 2014. Prescriptive evolution to conserve and manage biodiversity. Annual Review of Ecology, Evolution, and Systematics 45:1-22. Stanley CQ, et al. 2014. Connectivity of Wood Thrush breeding, wintering, and migration sites based on range-wide tracking. Conservation Biology 29:164-174. Stockwell CA, Hendry AP, Kinnison MT. 2003. Contemporary evolution meets conservation biology. Trends in Ecology & Evolution 18:94-101. Strimas-Mackey M, Miller E, Hochachka W. 2017. auk: eBird Data Extraction and Processing with AWK. R package version. Stutchbury BJ, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V. 2009. Tracking long-distance songbird migration by using geolocators. Science 323:896. Taylor CM, Norris DR. 2010. Population dynamics in migratory networks. Theoretical Ecology 3:65-73. Taylor CM, Stutchbury BJ. 2016. Effects of breeding versus winter habitat loss and fragmentation on the population dynamics of a migratory songbird. Ecological Applications 26:424-437. Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB. 2010. Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Molecular Ecology 19:3532-3548. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. 2002. Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution 17:76-83. Wiederholt R, López-Hoffman L, Cline J, Medellín RA, Cryan P, Russell A, McCracken G, Diffendorfer J, Semmens D. 2013. Moving across the border: modeling migratory bat populations. Ecosphere 4:1-16. Wildlife Conservation Society (WCS) and Center for International Earth Science Information Network (CIESIN). 2005. Last of the Wild Project. Version 2 (LWP-2). Global human influence index dataset. NASA Socioeconomic Data and Applications Center, Palisades, New York. Available from https://doi.org/10.7927/H46W980H (accessed May 2019). Yackulic CB, Sanderson EW, Uriarte M. 2011. Anthropogenic and environmental drivers of modern range loss in large mammals. Proceedings of the National Academy of Sciences of the United States of America 108:4024-4029. Zhen Y, Harrigan RJ, Ruegg KC, Anderson EC, Ng TC, Lao S, Lohmueller KE, Smith TB. 2017. Genomic divergence across ecological gradients in the Central African rainforest songbird (A ndropadus virens). Molecular Ecology 26:4966-4977. 32633916 NBK558824 10.1007/978-3-030-38281-0_12 Springer Cham (CH) The Pangenome: Diversity, Dynamics and Evolution of Genomes 2020 Tettelin Hervé H Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA grid.411024.2 0000 0001 2175 4264 Medini Duccio D GSK Vaccines R&D, Siena, Italy 9783030382803 9783030382810 10.1007/978-3-030-38281-0 Internet Eukaryotic PangenomesLinkIT
Ruegg KC, Harrigan RJ, Saracco JF, Smith TB, Taylor CM, , Tettelin H, Medini D, , Richard GF
Conservation biology : the journal of the Society for Conservation Biology Conserv. Biol. A genoscape-network model for conservation prioritization in a migratory bird. 10.1111/cobi.13536 Migratory animals are declining worldwide and coordinated conservation efforts are needed to reverse current trends. We devised a novel genoscape-network model that combines genetic analyses with species distribution modeling and demographic data to overcome challenges with conceptualizing alternative risk factors in migratory species across their full annual cycle. We applied our method to the long distance, Neotropical migratory bird, Wilson's Warbler (Cardellina pusilla). Despite a lack of data from some wintering locations, we demonstrated how the results can be used to help prioritize conservation of breeding and wintering areas. For example, we showed that when genetic, demographic, and network modeling results were considered together it became clear that conservation recommendations will differ depending on whether the goal is to preserve unique genetic lineages or the largest number of birds per unit area. More specifically, if preservation of genetic lineages is the goal, then limited resources should be focused on preserving habitat in the California Sierra, Basin Rockies, or Coastal California, where the 3 most vulnerable genetic lineages breed, or in western Mexico, where 2 of the 3 most vulnerable lineages overwinter. Alternatively, if preservation of the largest number of individuals per unit area is the goal, then limited conservation dollars should be placed in the Pacific Northwest or Central America, where densities are estimated to be the highest. Overall, our results demonstrated the utility of adopting a genetically based network model for integrating multiple types of data across vast geographic scales and better inform conservation decision-making for migratory animals. © 2020 Society for Conservation Biology. Ruegg Kristen C KC https://orcid.org/0000-0001-5579-941X Biology Department, Colorado State University, 251 W. Pitkins St, Fort Collins, CO, 80521, U.S.A. Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A. Harrigan Ryan J RJ Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A. Saracco James F JF The Institute for Bird Populations, PO Box 1346, Point Reyes Station, CA, 94956, U.S.A. Smith Thomas B TB Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, U.S.A. Taylor Caz M CM Department of Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs Center, New Orleans, LA, 70118, U.S.A. eng EPC-15-043 California Energy Commission WW-202R-17 National Geographic Society Journal Article 2020 05 11 United States Conserv Biol 9882301 0888-8892 IM Un Modelo de Redes de Panorama Poblacional para la Priorización de la Conservación de un Ave Migratoria Resumen Los animales migratorios están pasando por una declinación mundial y se requieren esfuerzos coordinados de conservación para revertir las tendencias actuales. Diseñamos un modelo novedoso de redes de panorama poblacional que combina el análisis genético con el modelado de la distribución de especies y los datos demográficos para sobreponerse a los obstáculos con la conceptualización de los factores alternativos de riesgo en las especies migratorias durante su ciclo anual completo. Aplicamos nuestro método al chipe de corona negra (Cardellina pusilla), un ave migratoria neotropical que recorre largas distancias. A pesar de la falta de datos de algunas localidades de invernación, mostramos cómo pueden usarse los resultados para ayudar a priorizar la conservación de las áreas de reproducción y de invernación. Por ejemplo, mostramos que cuando se consideraron en conjunto los resultados del modelado genético, demográfico y de redes queda claro que las recomendaciones de conservación diferirán dependiendo de si el objetivo es preservar linajes genéticos únicos o el mayor número de aves por unidad de área. Más específicamente, si el objetivo es la conservación de los linajes genéticos, entonces los recursos limitados deberían enfocarse en preservar el hábitat en la Sierra de California, la Cuenca de las Rocallosas, la costa de California (lugares en donde se reproducen los tres linajes genéticos más vulnerables) o en el oeste de México (en donde dos de los tres linajes más vulnerables pasan el invierno). Alternativamente, si el objetivo es la conservación del mayor número de individuos por unidad de área, entonces el financiamiento limitado debería aplicarse en el noroeste del Pacífico o en América Central, en donde se estima que las densidades poblacionales son las más altas. En general, nuestros resultados demostraron la utilidad de adoptar un modelo de redes basadas en la genética para la integración de datos a lo largo de escalas geográficas amplias y para informar de mejor manera la toma de decisiones de conservación para los animales migratorios. ????????????????, ??????????????????????????????????????, ??????????????????????, ?????????????????????????????????????????????????--????? (Cardellina pusilla)?????????????, ????????????????????????????????, ????????????????????, ??????, ?????????--?????????????????????????????, ????????????????, ????????????, ??????????????????????????????????????, ????????????????????????, ???????????, ????????????????????????, ???????????????????, ??????????????????????, ?????????????????, ?????????, ??????????????????????????????????, ???????????????????????: ???; ??: ????. aves birds conservation planning evolución evolution genetics genética migratorio migratory planeación de la conservación ???? ?? ?? ??? ?? 2019 03 01 2020 03 02 2020 03 04 2020 5 12 6 0 2020 5 12 6 0 2020 5 12 6 0 aheadofprint 32391608 10.1111/cobi.13536 Literature Cited, 2020</Year> <Month>May</Month> <Day>11</Day> </PubDate> </JournalIssue> <Title>Conservation biology : the journal of the Society for Conservation Biology Conserv. Biol. A genoscape-network model for conservation prioritization in a migratory bird. 10.1111/cobi.13536 Migratory animals are declining worldwide and coordinated conservation efforts are needed to reverse current trends. We devised a novel genoscape-network model that combines genetic analyses with species distribution modeling and demographic data to overcome challenges with conceptualizing alternative risk factors in migratory species across their full annual cycle. We applied our method to the long distance, Neotropical migratory bird, Wilson's Warbler (Cardellina pusilla). Despite a lack of data from some wintering locations, we demonstrated how the results can be used to help prioritize conservation of breeding and wintering areas. For example, we showed that when genetic, demographic, and network modeling results were considered together it became clear that conservation recommendations will differ depending on whether the goal is to preserve unique genetic lineages or the largest number of birds per unit area. More specifically, if preservation of genetic lineages is the goal, then limited resources should be focused on preserving habitat in the California Sierra, Basin Rockies, or Coastal California, where the 3 most vulnerable genetic lineages breed, or in western Mexico, where 2 of the 3 most vulnerable lineages overwinter. Alternatively, if preservation of the largest number of individuals per unit area is the goal, then limited conservation dollars should be placed in the Pacific Northwest or Central America, where densities are estimated to be the highest. Overall, our results demonstrated the utility of adopting a genetically based network model for integrating multiple types of data across vast geographic scales and better inform conservation decision-making for migratory animals. © 2020 Society for Conservation Biology. Ruegg Kristen C KC https://orcid.org/0000-0001-5579-941X Biology Department, Colorado State University, 251 W. Pitkins St, Fort Collins, CO, 80521, U.S.A. Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A. Harrigan Ryan J RJ Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A. Saracco James F JF The Institute for Bird Populations, PO Box 1346, Point Reyes Station, CA, 94956, U.S.A. Smith Thomas B TB Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E Young Drive East, Los Angeles, CA, 90095, U.S.A. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, U.S.A. Taylor Caz M CM Department of Ecology and Evolutionary Biology, Tulane University, 400 Lindy Boggs Center, New Orleans, LA, 70118, U.S.A. eng EPC-15-043 California Energy Commission WW-202R-17 National Geographic Society Journal Article 2020 05 11 United States Conserv Biol 9882301 0888-8892 IM Un Modelo de Redes de Panorama Poblacional para la Priorización de la Conservación de un Ave Migratoria Resumen Los animales migratorios están pasando por una declinación mundial y se requieren esfuerzos coordinados de conservación para revertir las tendencias actuales. Diseñamos un modelo novedoso de redes de panorama poblacional que combina el análisis genético con el modelado de la distribución de especies y los datos demográficos para sobreponerse a los obstáculos con la conceptualización de los factores alternativos de riesgo en las especies migratorias durante su ciclo anual completo. Aplicamos nuestro método al chipe de corona negra (Cardellina pusilla), un ave migratoria neotropical que recorre largas distancias. A pesar de la falta de datos de algunas localidades de invernación, mostramos cómo pueden usarse los resultados para ayudar a priorizar la conservación de las áreas de reproducción y de invernación. Por ejemplo, mostramos que cuando se consideraron en conjunto los resultados del modelado genético, demográfico y de redes queda claro que las recomendaciones de conservación diferirán dependiendo de si el objetivo es preservar linajes genéticos únicos o el mayor número de aves por unidad de área. Más específicamente, si el objetivo es la conservación de los linajes genéticos, entonces los recursos limitados deberían enfocarse en preservar el hábitat en la Sierra de California, la Cuenca de las Rocallosas, la costa de California (lugares en donde se reproducen los tres linajes genéticos más vulnerables) o en el oeste de México (en donde dos de los tres linajes más vulnerables pasan el invierno). Alternativamente, si el objetivo es la conservación del mayor número de individuos por unidad de área, entonces el financiamiento limitado debería aplicarse en el noroeste del Pacífico o en América Central, en donde se estima que las densidades poblacionales son las más altas. En general, nuestros resultados demostraron la utilidad de adoptar un modelo de redes basadas en la genética para la integración de datos a lo largo de escalas geográficas amplias y para informar de mejor manera la toma de decisiones de conservación para los animales migratorios. ????????????????, ??????????????????????????????????????, ??????????????????????, ?????????????????????????????????????????????????--????? (Cardellina pusilla)?????????????, ????????????????????????????????, ????????????????????, ??????, ?????????--?????????????????????????????, ????????????????, ????????????, ??????????????????????????????????????, ????????????????????????, ???????????, ????????????????????????, ???????????????????, ??????????????????????, ?????????????????, ?????????, ??????????????????????????????????, ???????????????????????: ???; ??: ????. aves birds conservation planning evolución evolution genetics genética migratorio migratory planeación de la conservación ???? ?? ?? ??? ?? 2019 03 01 2020 03 02 2020 03 04 2020 5 12 6 0 2020 5 12 6 0 2020 5 12 6 0 aheadofprint 32391608 10.1111/cobi.13536 Literature Cited Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E. 2004. Variation in climate warming along the migration route uncouples arrival and breeding dates. Global Change Biology 10:1610-1617. Attard CR, Beheregaray LB, Möller LM. 2016. Towards population-level conservation in the critically endangered Antarctic blue whale: the number and distribution of their populations. Scientific Reports 6:22291. Bay R, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 2018. Genomic signals of selection predict climate-driven population declines. Science 359:83-89. Bridge ES, Kelly JF, Contina A, Gabrielson RM, MacCurdy RB, Winkler DW. 2013. Advances in tracking small migratory birds: a technical review of light-level geolocation. Journal of Field Ornithology 84:121-137. Brotons L, Thuiller W, Araújo MB and Hirzel AH. 2004. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437-448. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652-655. Charmantier A, Gienapp P. 2014. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications 7:15-28. Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026. Elith J, et al. 2011. A statistical explanation of MaxEnt for ecologists. Diversity & Distributions 17:43-57. Faaborg J, et al. 2010. Conserving migratory land birds in the New World: Do we know enough? Ecological Applications 20:398-418. Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecology Letters 18:1-16. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. 2012. Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution 27:489-496. Garner A, Rachlow JL, Hicks JF. 2005. Patterns of genetic diversity and its loss in mammalian populations. Conservation Biology 19:1215-1221. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography 24:276-292. Johnston A, Fink D, Reynolds MD, Hochachka WM, Sullivan BL, Bruns NE, Hallstein E, Merrifield MS, Matsumoto S, Kelling S. 2015. Abundance models improve spatial and temporal prioritization of conservation resources. Ecological Applications 25:1749-1756. Kellner K 2017. JagsUI: a wrapper around ?rjags? to streamline ?jags? analyse. Available from https://cran.r-project.org/package=jagsUI (accessed September 2019). Knight SM, Bradley DW, Clark RG, Gow EA, Bélisle M, Berzins LL, Blake T, Bridge ES, Burke L, Dawson RD. 2018. Constructing and evaluating a continent-wide migratory songbird network across the annual cycle. Ecological Monographs 88:445-460. Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM. 2015. A call for full annual cycle research in animal ecology. Biology Letters 11:20150552. Martin TG, Chadès I, Arcese P, Marra PP, Possingham HP, Norris DR. 2007. Optimal conservation of migratory species. PLOS ONE 2:e751. Marzluff, J M., R Sallabanks, eds. 1998. Avian conservation: research and management. Island Press, Washington, D.C. Moritz C 1994. Defining ?evolutionary significant units? for conservation. Trends in Ecology & Evolution 9:373-375. Palsbøll PJ, Berube M, Allendorf FW. 2007. Identification of management units using population genetic data. Trends in Ecology & Evolution 22:11-16. Pecl GT, et al. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:1-9. Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of Maxent. Ecography 40:887-893. Phillips SJ, Dudík M, Schapire RE. 2019. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed December 2019). Plummer M 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Page 125 in Proceedings of the 3rd international workshop on distributed statistical computing. R Foundation for Statistical Computing, Vienna. Procházka P, Hahn S, Rolland S, van der Jeugd H, Csörg? T, Jiguet F, Mokwa T, Liechti F, Vangeluwe D, Korner-Nievergelt F. 2017. Delineating large-scale migratory connectivity of reed warblers using integrated multistate models. Diversity and Distributions 23:27-40. Purvis A, Hector A. 2000. Getting the measure of biodiversity. Nature 405:212. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Redding DW and Ø. Mooers A. 2006. Incorporating evolutionary measures into conservation prioritization. Conservation Biology 20:1670-1678. Ridgely R, Allnutt T, Brooks T, McNicol D, Mehlman D, Young B, Zook J. 2003. Digital distribution maps of the birds of the Western Hemisphere. Version 2.1, NatureServe, Arlington, Virginia. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M. 2019. Decline of the North American avifauna. Science 366:120-124. Royle JA, Nichols JD, Kéry M. 2005. Modelling occurrence and abundance of species when detection is imperfect. Oikos 110:353-359. Ruegg K, Anderson EC, Paxton KL, Apkenas V, Lao S, Siegel RB, DeSante DF, Moore F, Smith TB. 2014. Mapping migration in a songbird using high-resolution genetic markers. Molecular Ecology 23:5726-5739. Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ, Whitfield M, Paxton EH, Smith TB. 2018. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecology Letters 21:1085-1096. Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA. 2014. Conserving mobile species. Frontiers in Ecology and the Environment 12:395-402. Rushing CS, Ryder TB, Scarpignato AL, Saracco JF, Marra PP. 2016. Using demographic attributes from long-term monitoring data to delineate natural population structure. Journal of Applied Ecology 53:491-500. Sauer JR, Link WA. 2011. Analysis of the North American breeding bird survey using hierarchical models. The Auk 128:87-98. Sauer JR, Pardieck KL, Ziolkowski Jr. DJ, Smith AC, Hudson M-AR, Rodriguez V, Berlanga H, Niven DK, Link WA. 2017. The first 50 years of the North American Breeding Bird Survey. The Condor 119:576-593. Sheehy J, Taylor CM, McCann KS, Norris DR. 2010. Optimal conservation planning for migratory animals: integrating demographic information across seasons. Conservation Letters 3:192-202. Small-Lorenz SL, Culp LA, Ryder TB, Will TC, Marra PP. 2013. A blind spot in climate change vulnerability assessments. Nature Climate Change 3:91-93. Smith TB, Kinnison MT, Strauss SY, Fuller TL, Carroll SP. 2014. Prescriptive evolution to conserve and manage biodiversity. Annual Review of Ecology, Evolution, and Systematics 45:1-22. Stanley CQ, et al. 2014. Connectivity of Wood Thrush breeding, wintering, and migration sites based on range-wide tracking. Conservation Biology 29:164-174. Stockwell CA, Hendry AP, Kinnison MT. 2003. Contemporary evolution meets conservation biology. Trends in Ecology & Evolution 18:94-101. Strimas-Mackey M, Miller E, Hochachka W. 2017. auk: eBird Data Extraction and Processing with AWK. R package version. Stutchbury BJ, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V. 2009. Tracking long-distance songbird migration by using geolocators. Science 323:896. Taylor CM, Norris DR. 2010. Population dynamics in migratory networks. Theoretical Ecology 3:65-73. Taylor CM, Stutchbury BJ. 2016. Effects of breeding versus winter habitat loss and fragmentation on the population dynamics of a migratory songbird. Ecological Applications 26:424-437. Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB. 2010. Spatial modelling and landscape-level approaches for visualizing intra-specific variation. Molecular Ecology 19:3532-3548. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT. 2002. Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution 17:76-83. Wiederholt R, López-Hoffman L, Cline J, Medellín RA, Cryan P, Russell A, McCracken G, Diffendorfer J, Semmens D. 2013. Moving across the border: modeling migratory bat populations. Ecosphere 4:1-16. Wildlife Conservation Society (WCS) and Center for International Earth Science Information Network (CIESIN). 2005. Last of the Wild Project. Version 2 (LWP-2). Global human influence index dataset. NASA Socioeconomic Data and Applications Center, Palisades, New York. Available from https://doi.org/10.7927/H46W980H (accessed May 2019). Yackulic CB, Sanderson EW, Uriarte M. 2011. Anthropogenic and environmental drivers of modern range loss in large mammals. Proceedings of the National Academy of Sciences of the United States of America 108:4024-4029. Zhen Y, Harrigan RJ, Ruegg KC, Anderson EC, Ng TC, Lao S, Lohmueller KE, Smith TB. 2017. Genomic divergence across ecological gradients in the Central African rainforest songbird (A ndropadus virens). Molecular Ecology 26:4966-4977. 32633916 NBK558824 10.1007/978-3-030-38281-0_12 Springer Cham (CH) The Pangenome: Diversity, Dynamics and Evolution of Genomes 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

6.  Differential Expression of Immune Genes between Two Closely Related Beetle Species with Different Immunocompetence following Attack by Asecodes parviclava.LinkIT
Yang X, Fors L, Slotte T, Theopold U, Binzer-Panchal M, Wheat CW, Hambäck PA
Genome biology and evolution, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

7.  Arrival timing and the influence of weather experienced during the nonbreeding and breeding periods on correlates of reproductive success in female field sparrows (Spizella pusilla) breeding in northeastern Pennsylvania, USA.LinkIT
Smith RJ, Hatch MI, Carey M
International journal of biometeorology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

8.  Parasitism in ecosystem engineer species: A key factor controlling marine ecosystem functioning.LinkIT
Pascal L, Grémare A, de Montaudouin X, Deflandre B, Romero-Ramirez A, Maire O
The Journal of animal ecology J Anim Ecol Parasitism in ecosystem engineer species: A key factor controlling marine ecosystem functioning. 10.1111/1365-2656.13236 Although parasites represent a substantial part of marine communities' biomass and diversity, their influence on ecosystem functioning, especially via the modification of host behaviour, remains largely unknown. Here, we explored the effects of the bopyrid ectoparasite Gyge branchialis on the engineering activities of the thalassinid crustacean Upogebia pusilla and the cascading effects on intertidal ecosystem processes (e.g. sediment bioturbation) and functions (e.g. nutrient regeneration). Laboratory experiments revealed that the overall activity level of parasitized mud shrimp is reduced by a factor 3.3 due to a decrease in time allocated to burrowing and ventilating activities (by factors 1.9 and 2.9, respectively). Decrease in activity level led to strong reductions of bioturbation rates and biogeochemical fluxes at the sediment-water interface. Given the world-wide distribution of mud shrimp and their key role in biogeochemical processes, parasite-mediated alteration of their engineering behaviour has undoubtedly broad ecological impacts on marine coastal systems functioning. Our results illustrate further the need to consider host-parasite interactions (including trait-mediated indirect effects) when assessing the contribution of species to ecosystem properties, functions and services. © 2020 British Ecological Society. Pascal Ludovic L https://orcid.org/0000-0002-9669-3336 EPOC, UMR 5805, Université de Bordeaux, Talence, France. EPOC, UMR 5805, CNRS, Talence, France. Grémare Antoine A https://orcid.org/0000-0002-5136-5777 EPOC, UMR 5805, Université de Bordeaux, Talence, France. EPOC, UMR 5805, CNRS, Talence, France. de Montaudouin Xavier X https://orcid.org/0000-0002-8012-9423 EPOC, UMR 5805, Université de Bordeaux, Talence, France. EPOC, UMR 5805, CNRS, Talence, France. Deflandre Bruno B https://orcid.org/0000-0002-2405-6223 EPOC, UMR 5805, Université de Bordeaux, Talence, France. EPOC, UMR 5805, CNRS, Talence, France. Romero-Ramirez Alicia A https://orcid.org/0000-0002-9167-3686 EPOC, UMR 5805, Université de Bordeaux, Talence, France. EPOC, UMR 5805, CNRS, Talence, France. Maire Olivier O https://orcid.org/0000-0001-6159-2570 EPOC, UMR 5805, Université de Bordeaux, Talence, France. EPOC, UMR 5805, CNRS, Talence, France. eng Institut National des Sciences de l'Univers, Centre National de la Recherche Scientifique Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche Journal Article 2020 04 09 England J Anim Ecol 0376574 0021-8790 IM behaviour biogeochemical fluxes bioturbation ecosystem engineer species ecosystem functioning parasite seasonal changes trait-mediated indirect effect 2019 05 15 2020 03 31 2020 4 10 6 0 2020 4 10 6 0 2020 4 10 6 0 aheadofprint 32271950 10.1111/1365-2656.13236 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The influence of migration patterns on exposure to contaminants in Nearctic shorebirds: a historical study.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Pratte I, Noble DG, Mallory ML, Braune BM, Provencher JF<br><font color=gray><i>Environmental monitoring and assessment, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><img src=rtal.png border=0></td></tr><td align=center></td><td align=center>1</td><td align=center></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>