Pubmed    Pubmed Central
uBio Home | uBioRSS


 uBio  Web Results 1 - 10 of about 17


Broader Terms:
   PACCAD clade 

More Specific:
Latest Articles on Danthonioideae from uBioRSS
Phylogeographical Pattern in the Southern African Grass Tenaxia disticha... - Latest Issue of Systematic Botany
Does polyploidy facilitate long-distance dispersal? - Annals of Botany - current issue

External Resources:

1.  The Pharus latifolius genome bridges the gap of early grass evolution.LinkIT
Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ
The Plant cell, 2021

2.  Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps).LinkIT
Píchová K, Pa?outová S, Kostov?ík M, Chudí?ková M, Stod?lková E, Novák P, Flieger M, van der Linde E, Kola?ík M
Molecular phylogenetics and evolution, 2018

3.  Adaptive radiations should not be simplified: The case of the danthonioid grasses.LinkIT
Peter Linder H, Bouchenak-Khelladi Y
Molecular phylogenetics and evolution, 2017

4.  Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.LinkIT
Teisher JK, McKain MR, Schaal BA, Kellogg EA
Annals of botany, 2017

5.  Synoptic taxonomy of Cortaderia Stapf (Danthonioideae, Poaceae).LinkIT
Testoni D, Linder HP
PhytoKeys, 2017

6.  Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type.LinkIT
Ripley B, Visser V, Christin PA, Archibald S, Martin T, Osborne C
Ecology, 2015

7.  Resolving deep relationships of PACMAD grasses: a phylogenomic approach.LinkIT
Cotton JL, Wysocki WP, Clark LG, Kelchner SA, Pires JC, Edger PP, Mayfield-Jones D, Duvall MR
BMC plant biology, 2015

8.  Does polyploidy facilitate long-distance dispersal?LinkIT
Linder HP, Barker NP
Annals of botany, 2014

9.  Evidence for recent evolution of cold tolerance in grasses suggests current distribution is not limited by (low) temperature.LinkIT
Humphreys AM, Linder HP
The New phytologistNew PhytolEvidence for recent evolution of cold tolerance in grasses suggests current distribution is not limited by (low) temperature.1261-127310.1111/nph.12244· Temperature is considered an important determinant of biodiversity distribution patterns. Grasses (Poaceae) occupy among the warmest and coldest environments on earth but the role of cold tolerance evolution in generating this distribution is understudied. We studied cold tolerance of Danthonioideae (c. 280 species), a major constituent of the austral temperate grass flora. · We determined differences in cold tolerance among species from different continents grown in a common winter garden and assessed the relationship between measured cold tolerance and that predicted by species ranges. We then used temperatures in current ranges and a phylogeny of 81% of the species to study the timing and mode of cold tolerance evolution across the subfamily. · Species ranges generally underestimate cold tolerance but are still a meaningful representation of differences in cold tolerance among species. We infer cold tolerance evolution to have commenced at the onset of danthonioid diversification, subsequently increasing in both pace and extent in certain lineages. Interspecific variation in cold tolerance is better accounted for by spatial than phylogenetic distance. · Contrary to expectations, temperature - low temperature in particular - appears not to limit the distribution of this temperate clade. Competition, time or dispersal limitation could explain its relative absence from northern temperate regions.© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.HumphreysAelys MAMInstitute of Systematic Botany, University of Zurich, Zurich, CH-8008, Switzerland.LinderH PeterHPInstitute of Systematic Botany, University of Zurich, Zurich, CH-8008, Switzerland.engJournal ArticleResearch Support, Non-U.S. Gov't20130325EnglandNew Phytol98828840028-646XIMAdaptation, PhysiologicalBiological EvolutionCold TemperatureModels, BiologicalPhylogenyPoaceaephysiologyPrincipal Component AnalysisQuantitative Trait, HeritableSeasonsSpecies SpecificityTime Factors20130107201302252013327602013327602013121660ppublish2352810710.1111/nph.12244References, 2013</i></font><br><font color=#008000><br></font></span><br>10.  <a href= class=title>Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO<br><font color=gray><i>Cladistics : the international journal of the Willi Hennig SocietyCladisticsPhylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification.333-35610.1111/j.1096-0031.2011.00384.xIncluded in the PACMAD clade of the family Poaceae (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae), the tribe Paniceae s.l. is one of the largest tribes of the subfamily Panicoideae, with more than 2000 species. This tribe comprises a huge morphological, cytological and physiological diversity represented by different inflorescence types, several basic chromosome numbers, and at least four major photosynthetic pathways. The tribe Paniceae has been the subject of molecular studies that have confirmed its paraphyly: two major clades were recognized based on their basic chromosome numbers (x?=?9, x?=?10). The x?=?10 Paniceae clade is sister to the Andropogoneae-Arundinelleae s.s. clade (x?=?10), while the combined x?=?10 clade is sister to the x?=?9 clade that contains the remaining genera of Paniceae. As a result of a recent realignment within the tribe in terms of the phylogenetic position of minor and major Paniceae genera, a reanalysis of the whole sampling is performed and new underrepresented taxa are discussed. A total of 155 genera, currently considered within subfamily Panicoideae, are represented here by almost all genera of Paniceae s.l., representatives of Andropogoneae and Arundinelleae s.s., and the endemic and small tribe Steyermarkochloeae; we also included specimens of subfamily Micrairoideae, tribes Isachneae and Eriachneae. The sampling includes as outgroups 18 genera of the PACMAD clade (excluding Panicoideae) and four genera from the BEP clade (Bambusoideae, Ehrhartoideae, Pooideae), rooting with Bromus inermis. A matrix with 265 taxa based on the combined evidence from ndhF plastid sequences (2074?bp) and 57 morphological characters was subjected to parsimony analyses. Jackknife resampling was used to calculate group support. Most clades are characterized by morphological, cytological, anatomical, and/or physiological characters. Major tribal changes are based on the basic chromosome number; the pantropical x?=?9 clade is here recognized as Paniceae s.s., while the American x?=?10 Paniceae s.l. is restricted to the reinstated tribe Paspaleae. The optimization of the photosynthetic pathway for the Paspaleae-Andropogoneae-Arundinelleae s.s. clade, including the monotypic Reynaudia, shows a plesiomorphic C4 state while the ancestral state for Paniceae s.s. is ambiguous. If Reynaudia were not included or placed elsewhere, the ancestral photosynthetic pathway for both the Paspaleae-Andropogoneae-Arundinelleae s.s. clade and the Paniceae s.s. would be unambiguously C3 . In order to explore character evolution further, the morphological characters were mapped onto one of the most parsimonious trees. A relationship between photosynthetic pathways and inflorescence morphology is suggested here for the first time. Based on the optimization of morphological characters and additional data, we propose names for almost all inner clades at the rank of subtribe with a few groups as incertae sedis. With this extensive sampling, we resolved the phylogenetic relationships and the assignation of synapomorphies, and improved the support in subtribe sorting; consequently a robust circumscription of the tribe Paniceae s.l. is proposed.© The Willi Hennig Society 2011.MorroneOsvaldoOInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.AagesenLoneLInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.ScatagliniMaria AMAInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.SalariatoDiego LDLInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.DenhamSilvia SSSInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.ChemisquyMaria AMAInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.SedeSilvana MSMInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.GiussaniLiliana MLMInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.KelloggElizabeth AEAUniversity of Missouri-St Louis, One University Boulevard, St Louis, MO 63121, USA.ZuloagaFernando OFOInstituto de Botánica Darwinion, Labardén 200, San Isidro, B1642HYD, Buenos Aires, Argentina.engGENBANKJN604671AY029618JN604672EU159708AY029619JN604673JN604674AF117391AF251447AY029640AY029620JN604675JN604676AF117392AY029657AY188490AY029622AF117393AF117394AY847121AF251460AY029623AY029624AF117395AY847124BIU71037JN604677DQ355988AY029621AF117396GU561512AY029625AY029672AF499150AF499152AY623746AF499153AY847122JN604678AF251462AY029626JN604679JN604680AY847125AY029694AY847126AF117397JN604681AF117398AF117400JN604682AY188455AY188482AY188479AY029652AY188491AF117404AY847139JN604683DQ646392JN604684JN604685AF251459AY847116AY188485AY188461AY188464AY029627AY029654AF117409AY029630AM849203AY029628AY029629JN604686AF251464AY029631AY029632AY029633AF117410JN604687AY618659AY029634JN604688AY847120AF117411AY029637AY029636JN604689AY029659JN604690JN604691AY029635AY188468AY188478AF117412AY029638AY847119JN604692AY623749AF251458EU805492AY029639GU594628AY847129AY847117JN604693JN604694AY847123AY029649AY029675AF251457AY029641AY622316AF443813AF117401AY188452JN604695AY188486AY029656AY188488AY029686AY029642AY188453AY029644AY847128AY029643JN604696AY188454AY188456AY029658AY188457AY188459AY188460AY188462GU594631AY188466AY029647AY029650AY188470AY188472AY029660AY188474AY029645AY188475AY029646AY188480AY188481AY188467AY029661AY188484AY188489AY188492AY188493AY188494AY188495AY188496JN604697JN604698JN604699AY188463AY188473AY029653AY188477AY029663AY029669AY029666AY029690AY029689AY029664AY029671AY029667AY029668AY029665AY029670AF117418AY188469JN604700AY029674EU819409JN604701AY847130AY029676JN604702EF189892JN604703EU107783JN604704AY029692AY029677AF117420GU594616AF499145AY029662AF499141AF499140AY029683AY029678AY029680AF499139JN604705JN604706AF117421AF251465AY847140JN604707EF189895AY188499AY029685AY029655AY188500AY029684AY188471JN604708JN604709AF251455AY029687AY029688JN604711GU594624JN604710AY188465AY188476FJ486535AF117433JN604712AY847118AF251463SJ9599AY029691JN604713JN604714JN604715JN604716GU594636AY847133AY632374AY029648EF189896Journal Article20120103United StatesCladistics98810570748-3007IM202111271312012810020128101ppublish3483645110.1111/j.1096-0031.2011.00384.xReferences, 2012</i></font><br><font color=#008000><br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=><img src=o_yellow.png border=0></a></td><td align=center><a href=><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=>2</a></td><td align=center><a href=>»</a></td></tr></table></table></tr></table></td><script src="" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>