Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 49

Scientific:
   Cephalopholis miniata (Coral trout) 
   Plectropomus areolatus (Squaretail coral trout) 
   Plectropomus laevis (Giant coral trout) 
   Plectropomus leopardus (Red coral trout) 
   Plectropomus maculatus (Barred-cheek coral trout) 
   Plectropomus oligacanthus (Vermiculate coral trout) 
   Plectropomus pessuliferus (Violet coral trout) 
   Variola albimarginata (Painted coral trout) 
   Variola louti (Lyretail coral trout) 

Synonyms:
   Bodianus maculatus 
   Cephalopholis argus (Peacock grouper) 
   Cephalopholis hemistiktos (Yellowfin head) 
   Cephalopholis miniata (bluespot rockcod) 
   Cephalopholis miniatus 
   Cephalopholis sexmaculata (Six-blotch rockcod) 
   Cephalopholis taeniops (African hind) 
   Cephalopolis miniatus 
   Holocentrus leopardus 
   Labrus laevis 
   Perca louti 
   Perca miniata 
   Plectropoma areolatum 
   Plectropomus areolatum 
   Plectropomus areolatus (Squaretail leopardgrouper) 
   Plectropomus laevis (Footballer trout) 
   Plectropomus leopardus (Common coral trout) 
   Plectropomus maculatus (Leopard fish) 
   Plectropomus pessuliferus (roving coralgrouper) 
   Variola albimarginata (Painted coral trout) 
   Variola louti (Lunar-tailed rock-cod) 

Broader Terms:
   Bodianus (hogfishes) 
   Cephalopholis 
   Coral 
   Labrus (wrasses) 
   Perca (yellow perches) 
   Perciformes (perch-like fishes) 
   Plectropoma 
   Plectropomus 
   Variola 
 
 


Bodianus maculatus
NYPL Digital Gallery



1.  Direct and indirect effects of heatwaves on a coral reef fishery.LinkIT
Brown CJ, Mellin C, Edgar GJ, Campbell MD, Stuart-Smith RD
Global change biology Glob Chang Biol Direct and indirect effects of heatwaves on a coral reef fishery. 1214-1225 10.1111/gcb.15472 Marine heatwaves are increasing in frequency and intensity, and indirectly impacting coral reef fisheries through bleaching-induced degradation of live coral habitats. Marine heatwaves also affect fish metabolism and catchability, but such direct effects of elevated temperatures on reef fisheries are largely unknown. We investigated direct and indirect effects of the devastating 2016 marine heatwave on the largest reef fishery operating along the Great Barrier Reef (GBR). We used a combination of fishery-independent underwater census data on coral trout biomass (Plectropomus and Variola spp.) and catch-per-unit-effort (CPUE) data from the commercial fishery to evaluate changes in the fishery resulting from the 2016 heatwave. The heatwave caused widespread, yet locally patchy, declines in coral cover, but we observed little effect of local coral loss on coral trout biomass. Instead, a pattern of decreasing biomass at northern sites and stable or increasing biomass at southern sites suggested a direct response of populations to the heatwave. Analysis of the fishery-independent data and CPUE found that in-water coral trout biomass estimates were positively related to CPUE, and that coral trout catch rates increased with warmer temperatures. Temperature effects on catch rates were consistent with the thermal affinities of the multiple species contributing to this fishery. Scaling-up the effect of temperature on coral trout catch rates across the region suggests that GBR-wide catches were 18% higher for a given level of effort during the heatwave year relative to catch rates under the mean temperatures in the preceding 6 years. These results highlight a potentially large effect of heatwaves on catch rates of reef fishes, independent of changes in reef habitats, that can add substantial uncertainty to estimates of stock trends inferred from fishery-dependent (CPUE) data. Overestimation of CPUE could initiate declines in reef fisheries that are currently fully exploited, and threaten sustainable management of reef stocks. © 2020 John Wiley & Sons Ltd. Brown Christopher J CJ https://orcid.org/0000-0002-7271-4091 Australian Rivers Institute - Coasts and Estuaries, School of Environment and Science, Griffith University, Nathan, Qld, Australia. Mellin Camille C https://orcid.org/0000-0002-7369-2349 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia. The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia. Edgar Graham J GJ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia. Campbell Max D MD https://orcid.org/0000-0003-2860-1580 Australian Rivers Institute - Coasts and Estuaries, School of Environment and Science, Griffith University, Nathan, Qld, Australia. Stuart-Smith Rick D RD Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia. eng Parks Australia Ian Potter Foundation DE160101207 Australian Research Council Journal Article 2020 12 19 England Glob Chang Biol 9888746 1354-1013 IM Bayesian modelling catchability climate change coral bleaching coral reef fishery coral trout heatwave 2020 07 26 2020 11 04 2020 11 17 2020 12 20 6 0 2020 12 20 6 0 2020 12 19 8 35 ppublish 33340216 10.1111/gcb.15472 REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Dependency of Queensland and the Great Barrier Reef's tropical fisheries on reef-associated fish.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Brown CJ, Taylor W, Wabnitz CCC, Connolly RM<br><font color=gray><i>Scientific reports, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Could the gut microbiota community in the <b>coral trout</b> Plectropomus leopardus (Lacepède, 1802) be affected by antibiotic bath administration?</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Zheng X, Zhou S, Hu J, Yang R, Gu Z, Qin JG, Ma Z, Yu G<br><font color=gray><i>Veterinary medicine and science, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>da Silva CRB, van den Berg CP, Condon ND, Riginos C, Wilson RS, Cheney KL<br><font color=gray><i>The Journal of animal ecology J Anim Ecol Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature. 1735-1746 10.1111/1365-2656.13226 Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems. © 2020 British Ecological Society. da Silva Carmen R B CRB 0000-0003-0160-5872 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. School of Biological Sciences, Monash University, Clayton, Vic., Australia. van den Berg Cedric P CP 0000-0001-6422-7237 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Condon Nicholas D ND 0000-0002-1833-1129 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. Riginos Cynthia C 0000-0002-5485-4197 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Wilson Robbie S RS 0000-0002-0116-5427 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Cheney Karen L KL 0000-0001-5622-9494 School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia. Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia. eng Dryad 10.5061/dryad.zkh189371 Journal Article 2020 04 13 England J Anim Ecol 0376574 0021-8790 IM Acclimatization Animals Ecosystem Fishes Predatory Behavior Seasons Temperature acclimation background matching camouflage colour change intertidal luminance change plasticity thermal performance 2020 01 20 2020 03 10 2020 4 1 6 0 2020 4 1 6 0 2020 4 1 6 0 ppublish 32227334 10.1111/1365-2656.13226 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Preferences and perceptions of the recreational spearfishery of the Great Barrier Reef.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Bradford T, Wolfe K, Mumby PJ<br><font color=gray><i>PloS one, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hopf JK, Jones GP, Williamson DH, Connolly SR<br><font color=gray><i>Ecological applications : a publication of the Ecological Society of America, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Contrasting population genetic structure in three aggregating groupers (Percoidei: Epinephelidae) in the Indo-West Pacific: the importance of reproductive mode.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ma KY, van Herwerden L, Newman SJ, Berumen ML, Choat JH, Chu KH, Sadovy de Mitcheson Y<br><font color=gray><i>BMC evolutionary biology, 2018</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kroon FJ, Motti CE, Jensen LH, Berry KLE<br><font color=gray><i>Scientific reports, 2018</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Integrating complementary methods to improve diet analysis in fishery-targeted species.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Matley JK, Maes GE, Devloo-Delva F, Huerlimann R, Chua G, Tobin AJ, Fisk AT, Simpfendorfer CA, Heupel MR<br><font color=gray><i>Ecology and evolution, 2018</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Effects of dietary Spirulina platensis on growth performance, hematological and serum biochemical parameters, hepatic antioxidant status, immune responses and disease resistance of <b>Coral trout</b> Plectropomus leopardus (Lacepede, 1802).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Yu W, Wen G, Lin H, Yang Y, Huang X, Zhou C, Zhang Z, Duan Y, Huang Z, Li T<br><font color=gray><i>Fish & shellfish immunology, 2018</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Coral+trout&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>