Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 794

Broader Terms:
   Cellular 

More Specific:
   Archaebacteria 
   Eubacteria 
   Eukaryota 
   Unassigned 
 
 
Latest Articles on Cellular life from uBioRSS
Cucumber metal transport protein MTP8 confers increased tolerance to mangan... - Journal of Experimental Botany - current issue
Leontodon hispidus L. 2585 Bot Hrapavi lavlji zub Mali Lošinj Mladen vojar... - Plant Taxonomy Photo Pool


External Resources:



1.  Non-canonical roles of connexins.LinkIT
Van Campenhout R, Cooreman A, Leroy K, Rusiecka OM, Van Brantegem P, Annaert P, Muyldermans S, Devoogdt N, Cogliati B, Kwak BR, Vinken M
Progress in biophysics and molecular biology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Hydration of Carboxyl Groups: A Route toward Molecular Recognition?LinkIT
Di Gioacchino M, Bruni F, Imberti S, Ricci MA
The journal of physical chemistry. B, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Phosphorylation of the acyl-CoA binding pocket of the FadR transcription regulator in Sulfolobus acidocaldarius.LinkIT
Maklad HR, Gutierrez GJ, Esser D, Siebers B, Peeters E
Biochimie, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  An Artificial Amphiphilic Peptide Promotes Endocytic Uptake by Inducing Membrane Curvature.LinkIT
Masuda T, Hirose H, Baba K, Walrant A, Sagan S, Inagaki N, Fujimoto T, Futaki S
Bioconjugate chemistry, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis.LinkIT
Thompson Z, Cowan JA
Small (Weinheim an der Bergstrasse, Germany), 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

6.  PapA, a peptidoglycan-associated protein, interacts with OmpC and maintains cell envelope integrity.LinkIT
Wang YH, Chen HH, Huang Z, Li XJ, Zhou N, Liu C, Jiang CY, Li DF, Liu SJ
Environmental microbiology Environ. Microbiol. PapA, a peptidoglycan-associated protein, interacts with OmpC and maintains cell envelope integrity. 10.1111/1462-2920.15038 The bacterial cell envelope is critical to support and maintain cellular life. In Gram-negative bacterial cells, the outer membrane and the peptidoglycan layer are two important parts of the cell envelope and they harbour abundant proteins. Here, we report the identification and characterization of a previously unknown peptidoglycan-associated protein, PapA, from the Gram-negative Comamonas testosteroni. PapA bound peptidoglycan with its C-terminal domain and interacted with the outer-membrane porin OmpC. The PapA-OmpC complex riveted the outer membrane and the peptidoglycan layer, and played a role in maintaining cell envelope integrity. When papA was disrupted, the mutant CNB-1?papA apparently had an outer membrane partly separated from the peptidoglycan layer. Phenotypically, the mutant CNB-1?papA lost chemotactic responses and had longer lag-phase of growth, less flagellation and higher sensitivity to harsh environments. Totally, 1093 functionally unknown PapA homologues were identified from the public NR protein database and they were mainly distributed in Burkholderiales of Betaproteobacteria. Our finding provides a clue that the PapA homologous proteins might function as a rivet to maintain cell envelope integrity in those Gram-negative bacteria. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd. Wang Yun-Hao YH https://orcid.org/0000-0001-9934-3852 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. Chen Hong-He HH State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Huang Zhou Z State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. Li Xiao-Jing XJ State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. Zhou Nan N State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Liu Chang C State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Jiang Cheng-Ying CY State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Li De-Feng DF State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. Liu Shuang-Jiang SJ https://orcid.org/0000-0002-7585-310X State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China. eng 2019YFA0905500 National Key R&D Program of China 31861133002 National Natural Science Foundation of China Journal Article 2020 04 24 England Environ Microbiol 100883692 1462-2912 IM 2020 02 17 2020 04 21 2020 4 25 6 0 2020 4 25 6 0 2020 4 25 6 0 aheadofprint 32329167 10.1111/1462-2920.15038 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title><b>Cellular life</b> from the three domains and viruses are transcriptionally active in a hypersaline desert community.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Uritskiy G, Tisza MJ, Gelsinger DR, Munn A, Taylor J, DiRuggiero J<br><font color=gray><i>Environmental microbiology Environ. Microbiol. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. 10.1111/1462-2920.15023 Microbial communities play essential roles in the biosphere and understanding the mechanisms underlying their functional adaptations to environmental conditions is critical for predicting their behaviour. This aspect of microbiome function has not been well characterized in natural high-salt environments. To address this knowledge gap, and to build a general framework relating the genomic and transcriptomic components in a microbiome, we performed a meta-omic survey of extremophile communities inhabiting halite (salt) nodules in the Atacama Desert. We found that the major phyla of this halophilic community have different levels of total transcriptional activity, at the selected time-points, and that different metabolic pathways were activated in their transcriptomes. We report that a novel Dolichomastix alga-the only eukaryote found in this system-was the most active community member. It produced the vast majority of the community's photosynthetic transcripts despite being outnumbered by Cyanobacteria. The divergence in the transcriptional landscapes of these segregated communities, compared with the relatively stable metagenomic functional potential, suggests that microbiomes in each salt nodule undergo unique transcriptional adjustments to adapt to local conditions. We also report the characterization of several previously unknown halophilic viruses, many of which exhibit transcriptional activity indicative of host infection. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd. Uritskiy Gherman G Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. Tisza Michael J MJ Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD, 20892-4263, USA. Gelsinger Diego R DR Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. Munn Adam A Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. Taylor James J Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA. DiRuggiero Jocelyne J https://orcid.org/0000-0001-6721-8061 Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA. eng DEB1556574 Division of Environmental Biology NNX15AK57G NASA NASA United States NNX15AP18G NASA NASA United States HG006620 HG NHGRI NIH HHS United States Journal Article 2020 04 19 England Environ Microbiol 100883692 1462-2912 IM 2019 11 11 2020 04 12 2020 4 21 6 0 2020 4 21 6 0 2020 4 21 6 0 aheadofprint 32307861 10.1111/1462-2920.15023 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>An ancient evolutionary connection between Ribonuclease A and EndoU families.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Mushegian A, Sorokina I, Eroshkin A, Dlaki? M<br><font color=gray><i>RNA (New York, N.Y.), 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO<br><font color=gray><i>Nature communications, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Protein Interface Complementarity and Gene Duplication Improve Link Prediction of Protein-Protein Interaction Network.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Chen Y, Wang W, Liu J, Feng J, Gong X<br><font color=gray><i>Frontiers in genetics, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Cellular+life&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>