Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 62

Synonyms:
   Catenibacterium 

Broader Terms:
   Catenibacterium 
   Lachnospiraceae 
   Mollicutes 

More Specific:
   Catenibacterium mitsuokai 
   environmental samples 
 
 
Latest Articles on Catenibacterium from uBioRSS
Catenibacterium Kageyama & Benno, 2000 - WoRMS latest additions
Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic... - PubMed: species


External Resources:



1.  Changes in the gut microbiome in relation to the degree of gastric mucosal atrophy before and after Helicobacter pylori eradication.LinkIT
Furune S, Yamamoto K, Honda T, Fujiyoshi T, Kakushima N, Furukawa K, Ohno E, Nakamura M, Miyahara R, Kawashima H, Ishigami M, Hirooka Y, Fujishiro M
Scandinavian journal of gastroenterology, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  The effect of probiotics supplementation in postoperative cancer patients: a prospective pilot study.LinkIT
Kwon H, Chae SH, Jung HJ, Shin HM, Ban OH, Yang J, Kim JH, Jeong JE, Jeon HM, Kang YW, Park CK, Won DD, Lee JK
Annals of surgical treatment and research, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Early life feeding accelerates gut microbiome maturation and suppresses acute post-weaning stress in piglets.LinkIT
Choudhury R, Middelkoop A, Boekhorst J, Gerrits WJJ, Kemp B, Bolhuis JE, Kleerebezem M
Environmental microbiologyEnviron MicrobiolEarly life feeding accelerates gut microbiome maturation and suppresses acute post-weaning stress in piglets.7201-721310.1111/1462-2920.15791Early life microbiome perturbations can have important effects on host development, physiology and behaviour. In this longitudinal study, we evaluated the impact of early feeding on gut microbiome colonization in neonatal piglets. Early-fed (EF) piglets had access to a customized fibrous diet from 2?days after birth until weaning in addition to mother's milk, whereas control piglets suckled mother's milk only. Rectal swabs were collected at multiple time points until 6?weeks of age to investigate microbiota development using 16S rRNA gene profiling. The dynamic pre-weaning microbiota colonization was followed by a relatively stable post-weaning microbiota, represented by Prevotella, Roseburia, Faecalibacterium, Ruminococcus, Megasphaera, Catenibacterium and Subdoligranulum. EF piglets showed an accelerated microbiota maturation, characterized by increased microbial diversity, pre-weaning emergence of post-weaning-associated microbes and a more rapid decline of typical pre-weaning microbes. Furthermore, the individual eating behaviour scores of piglets quantitatively correlated with their accelerated microbiome. Importantly, EF piglets displayed a smoother relative weight gain and tended to reach a higher relative weight gain, in addition to reduced diarrhoea scores in the first week post-weaning. Overall, these findings demonstrate the beneficial impact of early feeding on microbiota development as well as pig health and performance during the weaning transition.© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.ChoudhuryRRhttps://orcid.org/0000-0002-6282-211XHost-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.MiddelkoopAAAdaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.BoekhorstJJHost-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.GerritsW J JWJJAnimal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.KempBBAdaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.BolhuisJ EJEAdaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.KleerebezemMMhttps://orcid.org/0000-0001-8552-2235Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.eng868.15.010De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)Journal Article20211016EnglandEnviron Microbiol1008836921462-2912IM2021090820210721202109242021101760202110176020211016837ppublish3465528310.1111/1462-2920.15791References, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Loss of diurnal behavioral rhythms and impaired lipid metabolism in growing pigs with mistimed feeding.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Wang QJ, Guo Y, Yao CY, Zhang KH, Li Q, Shan CH, Liu P, Wang MZ, Zhu F, An L, Tian JH, Wu ZH<br><font color=gray><i>FASEB journal : official publication of the Federation of American Societies for Experimental BiologyFASEB JLoss of diurnal behavioral rhythms and impaired lipid metabolism in growing pigs with mistimed feeding.e2197210.1096/fj.202100768RThe misalignment of eating time and the endogenous circadian rhythm impairs the body's ability to maintain homeostasis. Although it is well established that children and growing animals differ from adults in their energy metabolism and behavioral patterns, little is known about how mistimed feeding disturbs the diurnal rhythms of behavior and metabolism in children and growing diurnal animals. In this study, growing pigs (diurnal animal) were randomly assigned to the daytime-restricted feeding (DRF) and nighttime-restricted feeding (NRF) groups for 5 weeks. Compared with observations in the DRF group, NRF disrupted the diurnal rhythm of behavior and clock genes and lowered the serum ghrelin, dopamine, and serotonin levels during the daytime and nighttime. Microbiome analysis results suggested that NRF altered the diurnal rhythm and composition of the gut microbiota, and increased log-ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio. Based on the serum proteome, the results further revealed that rhythmic and upregulated proteins in NRF were mainly involved in oxidative stress, lipid metabolism, immunity, and cancer biological pathways. Serum physiological indicators further confirmed that NRF decreased the concentration of melatonin and fibroblast growth factor 21 during the daytime and nighttime, increased the diurnal amplitude and concentrations of very-low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increased the apolipoprotein B/ApoA1 ratio, which is a marker of metabolic syndrome. Taken together, this study is the first to reveal that mistimed feeding disrupts the behavioral rhythms of growing pigs, reprograms gut microbiota composition, reduces the serum levels of hormones associated with fighting depression and anxiety, and increases the risk of lipid metabolic dysregulation.© 2021 Federation of American Societies for Experimental Biology.WangQiang-JunQJState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.GuoYaoY0000-0002-4691-5623State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.YaoChun-YanCYState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.ZhangKe-HaoKHState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.LiQinQState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.ShanChun-HuaCHState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.LiuPengPState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.WangMei-ZhiMZState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.ZhuFengFState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.AnLeiLKey Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.TianJian-HuiJHKey Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.WuZhong-HongZHState Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China.engJournal ArticleResearch Support, Non-U.S. Gov'tUnited StatesFASEB J88044840892-6638IMAnimalsCircadian RhythmFeeding BehaviorLipid MetabolismSwinebehavioral rhythmscircadian rhythmfeeding timegrowing pigmetabolic syndrome202108282021051120210920202110612402021107602021111660ppublish3461364210.1096/fj.202100768RREFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The Fecal Microbiota of Dogs Switching to a Raw Diet Only Partially Converges to That of Wolves.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Xu J, Becker AAMJ, Luo Y, Zhang W, Ge B, Leng C, Wang G, Ding L, Wang J, Fu X, Janssens GPJ<br><font color=gray><i>Frontiers in microbiology, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Distinguishing feature of gut microbiota in Tibetan highland coronary artery disease patients and its link with diet.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ma Y, Zhu L, Ma Z, Gao Z, Wei Y, Shen Y, Li L, Liu X, Ren M<br><font color=gray><i>Scientific reports, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Effects of dietary macronutrient profile on apparent total tract macronutrient digestibility and fecal microbiota, fermentative metabolites, and bile acids of female dogs after spay surgery.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Phungviwatnikul T, Alexander C, Do S, He F, Suchodolski JS, de Godoy MRC, Swanson KS<br><font color=gray><i>Journal of animal science, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Oh JK, Vasquez R, Kim SH, Hwang IC, Song JH, Park JH, Kim IH, Kang DK<br><font color=gray><i>Journal of animal science and technology, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Martínez-Cuesta MC, Del Campo R, Garriga-García M, Peláez C, Requena T<br><font color=gray><i>Frontiers in cellular and infection microbiology, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>APB-13 improves the adverse outcomes caused by TGEV infection by correcting the intestinal microbial disorders in piglets.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Liang X, Wang P, Lian K, Han F, Tang Y, Zhang S, Zhang W<br><font color=gray><i>Journal of animal physiology and animal nutritionJ Anim Physiol Anim Nutr (Berl)APB-13 improves the adverse outcomes caused by TGEV infection by correcting the intestinal microbial disorders in piglets.10.1111/jpn.13555Porcine transmissible gastroenteritis virus (TGEV) is an enteric coronavirus that has caused high morbidity and mortality of piglets worldwide. Previous studies have shown that the TGEV can lead to severe diarrhoea, vomiting and dehydration in 2-week-old piglets and weaned piglets, resulting in a large number of piglet deaths. Antimicrobial peptides have broad-spectrum antimicrobial activity and a strong killing effect on bacteria, especially on the drug-resistant pathogenic bacteria, and it has attracted broad concern. However, there are very few reports on the effect of APB-13 (an antimicrobial peptide) on the intestinal microbes of piglets infected with TGEV. In this study, 16S rRNA gene sequencing was used to compare the microbial phylum and the genus of piglet's enteric microorganism in different experimental groups, and to predict the metabolic function of the microbial flora. At the same time, the apparent digestibility of nutrients, digestive enzyme activity, daily weight gain and survival rate were also measured. TGEV infection could cause the imbalance of intestinal microbes in piglets, and increase of the relative abundance of Proteobacteria, and decrease of the relative abundance of Firmicutes, Bacteroidetes and Actinobacteri. With the addition of APB-13, this problem can be alleviated, which can reduce the relative abundance of Proteobacteria and improve the balance of intestinal microorganisms. At the microbial genus level, after adding APB-13, the relative abundance of Catenibacterium, Enterobacter and Streptococcus in the intestinal tract of piglets infected with TGEV showed significant decrease, while the relative abundance of Lactobacillus and Ruminococcus increased. Finally, we found that APB-13 can significantly increase the activity of digestive enzyme in the intestinal tract of piglet, thereby improving the apparent digestibility of nutrients and the growth performance of piglets. This study demonstrates that APB-13 can alleviate the adverse outcomes caused by TGEV infection by correcting the intestinal microbial disorders.© 2021 Wiley-VCH GmbH.LiangXiuliXhttps://orcid.org/0000-0002-0112-0341Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China.College of Animal Science and Technology, Shihezi University, Shihezi, China.WangPengtaoPCollege of Animal Husbandry, Henan Agricultural University, Zhengzhou, China.LianKaiqiKHenan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China.HanFangfangFCollege of Animal Husbandry, Henan Agricultural University, Zhengzhou, China.TangYajieYHenan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China.ZhangShoumingSAnyang City Animal Product Quality Safety Monitoring and Inspection Center, Anyang, China.ZhangWenjuWCollege of Animal Science and Technology, Shihezi University, Shihezi, China.eng2017YFD0501003National '13th Five-Year Plan' Key R&D Plan ProjectJournal Article20210602GermanyJ Anim Physiol Anim Nutr (Berl)1011269790931-2439IMAPB-13intestinal florapigletporcine transmissible gastroenteritis virus20201009202008052021626582021636020216360aheadofprint3407563610.1111/jpn.13555REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Catenibacterium&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>