Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 27

Broader Terms:
   Dilleniidae 
   Magnoliopsida (dicotyledons) 
   Violanae 

More Specific:
   Alliaria aculeolata 
   Alliaria petiolata (Mustard root) 
   Alyssum alyssoides (pale alyssum) 
   Alyssum desertorum (desert madwort) 
   Alyssum desertorum desertorum (desert madwort) 
   Alyssum desertorum himalayensis (desert madwort) 
   Alyssum minus (alyssum) 
   Alyssum minus micranthum (European madwort) 
   Alyssum minus strigosum (hairy alyssum) 
   Alyssum montanum (mountain madwort) 
   Alyssum murale (yellowtuft) 
   Alyssum obovatum (American madwort) 
   Alyssum szovitsianum (Szowits' madwort) 
   Anelsonia eurycarpa (broad pod anelsonia) 
   Aphragmus eschscholtzianus (Aleutian cress) 
   Arabidopsis salsuginea (saltwater cress) 
   Arabidopsis thaliana (Wall-cress) 
   Arabis aculeolata (Waldo rockcress) 
   Arabis alpina (mountain rockcress) 
   Arabis arenicola (sand rockcress) 
   Arabis beckwithii (Beckwith's rockcress) 
   Arabis blepharophylla (rose rockcress) 
   Arabis bodiensis (Bodie Hills rockcress) 
   Arabis boivinii (Boivin's rockcress) 
   Arabis breweri (Brewer's rockcress) 
   Arabis breweri austiniae (Brewer's rockcress) 
   Arabis breweri breweri (Brewer's rockcress) 
   Arabis breweri pecuniaria (Brewer's rockcress) 
   Arabis calderi (Calder's rockcress) 
   Arabis canadensis (sicklepod rockcress) 
   Arabis caucasica (Snow-in-summer) 
   Arabis cobrensis (gray rockcress) 
   Arabis codyi (Cody's rockcress) 
   Arabis constancei (Constance's rockcress) 
   Arabis crandallii (Crandall's rockcress) 
   Arabis crucisetosa (wetsoil rockcress) 
   Arabis cusickii (Cusick's rockcress) 
   Arabis davidsonii (Davidson's rockcress) 
   Arabis davidsonii davidsonii (Davidson's rockcress) 
   Arabis davidsonii parva (Davidson's rockcress) 
   Arabis demissa (nodding rockcress) 
   Arabis demissa demissa (nodding rockcress) 
   Arabis demissa languida (nodding rockcress) 
   Arabis dispar (pinyon rockcress) 
   Arabis divaricarpa (spreadingpod rockcress) 
   Arabis drummondii (canadian rockcress) 
   Arabis eschscholtziana (Eschscholtz's hairy rockcress) 
   Arabis falcatoria (Grouse Creek rockcress) 
   Arabis falcifructa (Elko rockcress) 
   Arabis fecunda (Mt. Sapphire rockcress) 
   Arabis fendleri (fendler rockcress) 
   Arabis fendleri fendleri (Fendler's rockcress) 
   Arabis fendleri spatifolia (spoonleaf rockcress) 
   Arabis fernaldiana (Fernald's rockcress) 
   Arabis fernaldiana fernaldiana (park rockcress) 
   Arabis fernaldiana stylosa (park rockcress) 
   Arabis fructicosa (fruit rockcress) 
   Arabis furcata (Columbia Gorge rockcress) 
   Arabis furcata furcata (Columbia Gorge rockcress) 
   Arabis furcata olympica (Columbia Gorge rockcress) 
   Arabis georgiana (Georgia rockcress) 
   Arabis glabra (tower rockcress) 
   Arabis glabra glabra (tower rockcress) 
   Arabis glaucovalvula (bluepod rockcress) 
   Arabis gracilipes (Flagstaff rockcress) 
   Arabis gunnisoniana (Gunnison's rockcress) 
   Arabis hastatula (eared rockcress) 
   Arabis hirsuta (hairy rockcress) 
   Arabis hirsuta glabrata (mountain rockcress) 
   Arabis hirsuta hirsuta (hairy rockcress) 
   Arabis hirsuta pycnocarpa (creamflower rockcress) 
   Arabis hoffmannii (Hoffmann's rockcress) 
   Arabis holboellii (holboell rockcress) 
   Arabis holboellii collinsii (Collins' rockcress) 
   Arabis holboellii holboellii (Holboell's rockcress) 
... 
 
Latest Articles on Capparales from uBioRSS


Physaria vitulifera
ForestryImages.org

External Resources:



1.  Influence of Host Plant Species and Fertilization Regime on Larval Performance and Feeding Preference of the Redbacked Cutworm and the Pale Western Cutworm (Lepidoptera: Noctuidae).LinkIT
Batallas RE, Evenden ML
Journal of economic entomology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Do Floral Resources Benefit the Herbivorous Sawfly, Cephus cinctus (Hymenoptera: Cephidae), a Major Pest of Wheat in North America?LinkIT
Rand TA, Titus EF, Waters DK
Journal of economic entomology, 2019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Canola Nutrition and Variety Affect Oviposition and Offspring Performance in the Generalist Herbivore, Mamestra configurata (Lepidoptera: Noctuidae).LinkIT
Weeraddana CS, Evenden ML
Journal of economic entomology, 2018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Effect of Tea Saponin-Treated Host Plants on Activities of Antioxidant Enzymes in Larvae of the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae).LinkIT
Lin S, Chen Y, Bai Y, Cai H, Wei H, Tian H, Zhao J, Chen Y, Yang G, Gu X, Murugan K
Environmental entomology, 2018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum.LinkIT
Weis C, Hildebrandt U, Hoffmann T, Hemetsberger C, Pfeilmeier S, König C, Schwab W, Eichmann R, Hückelhoven R
The New phytologistNew PhytolCYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum.1310-131910.1111/nph.12759Aliphatic glucosinolates function in the chemical defense of Capparales. The cytochrome P450 83A1 monooxygenase (CYP83A1) catalyzes the initial conversion of methionine-derived aldoximes to thiohydroximates in the biosynthesis of glucosinolates, and thus cyp83a1 mutants have reduced levels of aliphatic glucosinolates. Loss of CYP83A1 function leads to dramatically reduced parasitic growth of the biotrophic powdery mildew fungus Erysiphe cruciferarum on Arabidopsis thaliana. The cyp83a1 mutants support less well the germination and appressorium formation of E. cruciferarum on the leaf surface and post-penetration conidiophore formation by the fungus. By contrast, a myb28-1 myb29-1 double mutant, which totally lacks aliphatic glucosinolates, shows a wild-type level of susceptibility to E. cruciferarum. The cyp83a1 mutants also lack very-long-chain aldehydes on their leaf surface. Such aldehydes support appressorium formation by E. cruciferarum in vitro. In addition, when chemically complemented with the C26 aldehyde n-hexacosanal, cyp83a1 mutants can again support appressorium formation. The mutants further accumulate 5-methylthiopentanaldoxime, the potentially toxic substrate of CYP83A1. Loss of powdery mildew susceptibility by cyp83a1 may be explained by a reduced supply of the fungus with inductive signals from the host and an accumulation of potentially fungitoxic metabolites. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.WeisCorinaCLehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany.HildebrandtUlrichUJulius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Botanik II, Universität Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany.HoffmannThomasTBiotechnologie der Naturstoffe, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany.HemetsbergerChristophCLehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany.PfeilmeierSebastianSLehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany.KönigConstanzeCLehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany.SchwabWilfriedWBiotechnologie der Naturstoffe, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany.EichmannRuthRLehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany.HückelhovenRalphRLehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85354, Freising, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20140306EnglandNew Phytol98828840028-646X0Aldehydes0Arabidopsis Proteins0Glucosinolates1406-65-1Chlorophyll9035-51-2Cytochrome P-450 Enzyme SystemEC 1.14.-CYP83A1 protein, ArabidopsisIMNew Phytol. 2014 Jun;202(4):1098-10024806944AldehydespharmacologyArabidopsisenzymologygeneticsmicrobiologyArabidopsis ProteinsgeneticsmetabolismAscomycotadrug effectsphysiologyChlorophyllmetabolismCytochrome P-450 Enzyme SystemgeneticsmetabolismGlucosinolatesmetabolismHost-Pathogen InteractionsMutationPlant LeavesenzymologygeneticsmicrobiologySpores, FungalBAX INHIBITOR-1aldoximesaliphatic glucosinolatescytochrome P450 monooxygenasemetabolonpowdery mildewsusceptibilityvery-long-chain aldehydes20131220201402072014386020143860201511660ppublish2460210510.1111/nph.12759References, 2014</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Augustine R, Majee M, Gershenzon J, Bisht NC<br><font color=gray><i>Journal of experimental botany, 2013</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Determination of volatile glucosinolate degradation products in seed coat, stem and in vitro cultures of Moringa peregrina (Forssk.) Fiori.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Dehshahri S, Afsharypuor S, Asghari G, Mohagheghzadeh A<br><font color=gray><i>Research in pharmaceutical sciences, 2012</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Pollinators, "mustard oil" volatiles, and fruit production in flowers of the dioecious tree Drypetes natalensis (Putranjivaceae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Johnson SD, Griffiths ME, Peter CI, Lawes MJ<br><font color=gray><i>American journal of botany, 2009</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Contribution of glucosinolate transport to Arabidopsis defense responses.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ellerbrock BLj, Kim JH, Jander G<br><font color=gray><i>Plant signaling & behavior, 2007</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Gimsing AL, Poulsen JL, Pedersen HL, Hansen HC<br><font color=gray><i>Environmental science & technology, 2007</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Capparales&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Capparales&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Capparales&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Capparales&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Capparales&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Capparales&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>