Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 621

Scientific:
   Cheilinus fasciatus (Boyan) 

Synonyms:
   Cheilinus chlororus 
   Cheilinus chlorouros 
   Cheilinus chlorourus (floral wrasse) 
   Cheilinus chlorurus (yellowdotted maori wrasse) 
   Cheilinus fasciatus (Red-banded wrasse) 
   Cheilinus trilobatus (Maori wrasse) 
   Sparus chlorourus 
   Sparus fasciatus 

Broader Terms:
   Cheilinus 
   Perciformes (perch-likes) 
   Sparus 
 
 


Sparus chlorourus
NYPL Digital Gallery

Did you mean: Boyania ?



1.  Growth factors produced by bone marrow stromal cells on nanoroughened titanium-aluminum-vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling.LinkIT
Berger MB, Bosh KB, Jacobs TW, Joshua Cohen D, Schwartz Z, Boyan BD
Journal of orthopaedic research : official publication of the Orthopaedic Research Society J Orthop Res Growth factors produced by bone marrow stromal cells on nanoroughened titanium-aluminum-vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling. 10.1002/jor.24869 Statement of Clinical Significance: There remains the need to develop materials and surfaces that can increase the rate of implant osseointegration. Though osteoanabolic agents, like bone morphogenetic protein (BMP), can provide signaling for osteogenesis, the appropriate design of implants can also produce an innate cellular response that may reduce or eliminate the need to use additional agents to stimulate bone formation. Studies show that titanium implant surfaces that mimic the physical properties of osteoclast resorption pits regulate cellular responses of bone marrow stromal cells (MSCs) by altering cell morphology, transcriptomes, and local factor production to increase their differentiation into osteoblasts without osteogenic media supplements required for differentiation of MSCs on tissue culture polystyrene (TCPS). The goal of this study was to determine how cells in contact with biomimetic implant surfaces regulate the microenvironment around these surfaces in vitro. Two different approaches were used. First, unidirectional signaling was assessed by treating human MSCs grown on TCPS with conditioned media from MSC cultures grown on Ti6Al4V biomimetic surfaces. In the second set of studies, bidirectional signaling was assessed by coculturing MSCs grown on mesh inserts that were placed into culture wells in which MSCs were grown on the biomimetic Ti6Al4V substrates. The results show that biomimetic Ti6Al4V surface properties induce MSCs to produce factors within 7 days of culture that stimulate MSCs not in contact with the surface to exhibit an osteoblast phenotype via endogenous BMP2 acting in a paracrine signaling manner. © 2020 Orthopaedic Research Society. Published by Wiley Periodicals LLC. Berger Michael B MB Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virgina, USA. Bosh Kyla B KB Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virgina, USA. Jacobs Thomas W TW Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virgina, USA. Joshua Cohen D D Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virgina, USA. Schwartz Zvi Z Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virgina, USA. Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA. Boyan Barbara D BD http://orcid.org/0000-0002-9642-0311 Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virgina, USA. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Georgia Tech and Emory University, Atlanta, Georgia, USA. eng MF19-005-LS Commonwealth Innovation and Technology R01AR052102 AR NIAMS NIH HHS United States R01AR072500 AR NIAMS NIH HHS United States Journal Article 2020 10 01 United States J Orthop Res 8404726 0736-0266 IM biomimetic bone-implant interface osteoblasts spine titanium 2020 07 12 2020 09 21 2020 09 29 2020 10 2 6 0 2020 10 2 6 0 2020 10 1 17 17 aheadofprint 33002223 10.1002/jor.24869 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Bisphosphonates inhibit surface-mediated osteogenesis.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Lotz EM, Lohmann CH, Boyan BD, Schwartz Z<br><font color=gray><i>Journal of biomedical materials research. Part A J Biomed Mater Res A Bisphosphonates inhibit surface-mediated osteogenesis. 1774-1786 10.1002/jbm.a.36944 Bisphosphonates (BPs) target osteoclasts, slowing bone resorption thus providing rationale to support osseointegration. However, BPs may negatively affect osteoblasts, impairing peri-implant bone formation. The goal of this study was to assess the effects BPs have on surface-mediated osteogenesis of osteoblasts. MG63 cells were cultured on 15-mm grade 2 titanium disks: smooth, hydrophobic-microrough, or hydrophilic-microrough (Institut Straumann AG, Basel, Switzerland). Tissue culture polystyrene (TCPS) was used as a control. At confluence, cells were treated with 0, 10-8 , 10-7 , and 10-6 M of alendronate, zoledronate, or ibandronate for 24?hr. Sprague Dawley rats were also treated with 1 ?g/kg/day ibandronate or phosphate-buffered saline control for 5?weeks. Calvarial osteoblasts (rat osteoblasts [rOBs]) were isolated, characterized, and cultured on surfaces. Osteogenic markers in the media were quantified using ELISAs. BP treatment reduced osteocalcin, osteoprotegerin, osteopontin, bone morphogenetic protein-2, prostaglandin E2 , transforming growth factor ?1, interleukin 10, and vascular endothelial growth factor in MG63 cells. The effect was more robust on rough surfaces, and higher concentrations of BPs stunted production to TCPS/PT levels. Ibandronate conditioned rOBs produced less osteogenic markers similar to direct BP treatment. These results suggest that BP exposure jeopardizes the pro-osteogenic response osteoblasts have to microstructured surfaces. Their effects persist in vivo and negatively condition osteoblast response in vitro. Clinically, BPs could compromise osseointegration. © 2020 Wiley Periodicals, Inc. Lotz Ethan M EM Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA. Lohmann Christoph H CH Department of Orthopaedics, Otto-von-Guericke-University, Magdeburg, Germany. Boyan Barbara D BD Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA. Schwartz Zvi Z Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA. Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA. eng NH NIH HHS United States AR NIAMS NIH HHS United States Georgia Institute of Technology NH NIH HHS United States AR NIAMS NIH HHS United States Journal Article 2020 04 21 United States J Biomed Mater Res A 101234237 1549-3296 IM MG63 bone microtopography osteoblast titanium 2018 08 27 2020 03 09 2020 03 11 2020 4 11 6 0 2020 4 11 6 0 2020 4 11 6 0 ppublish 32276287 10.1002/jbm.a.36944 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>In vivo evaluation of an electrospun and 3D printed cellular delivery device for dermal wound healing.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Clohessy RM, Cohen DJ, Stumbraite K, Boyan BD, Schwartz Z<br><font color=gray><i>Journal of biomedical materials research. Part B, Applied biomaterials J Biomed Mater Res B Appl Biomater In vivo evaluation of an electrospun and 3D printed cellular delivery device for dermal wound healing. 2560-2570 10.1002/jbm.b.34587 Burns and chronic wounds are especially challenging wounds to heal. In efforts to heal these wounds, physicians often use autologous skin grafts to help restore mechanical and barrier functionality to the wound area. These grafts are, by nature, limited in availability. In an effort to provide an alternative, we have developed an electrospun wound dressing designed to incorporate into the wound with the option to deliver a cellular payload. Here, a blend of poly(glycolic acid) and poly(ethylene glycol) was electrospun as part of a custom fabrication method that incorporated 3D printed poly(vinyl alcohol) sacrificial elements. This preparation is unique compared to traditional electrospinning as sacrificial elements provide an internal void space for an injectable payload to be delivered to the wound site. When the construct was tested in vivo (full thickness excisional skin wounds), wound closure was slightly delayed by the presence of the scaffold in both normal and challenged wounds. Quality of healing was improved in normal wounds as measured by histomorphometrics when treated with the construct and exhibited increased neovascularization. Our results demonstrate that the extracellular matrix-like scaffold developed in this study is beneficial to healing of full thickness skin defects and may benefit challenged wounds. © 2020 Wiley Periodicals, Inc. Clohessy Ryan M RM Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia. Cohen David J DJ Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia. Stumbraite Karolina K Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia. Boyan Barbara D BD Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia. Schwartz Zvi Z Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia. Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas. eng W81XWH-11-1-0306 U.S. Department of Defense Journal Article 2020 02 22 United States J Biomed Mater Res B Appl Biomater 101234238 1552-4973 IM 3D printing dermal scaffold electrospinning poly(glycolic acid) wound healing 2019 08 05 2020 01 21 2020 02 02 2020 2 23 6 0 2020 2 23 6 0 2020 2 23 6 0 ppublish 32086992 10.1002/jbm.b.34587 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Production of osteogenic and angiogenic factors by microencapsulated adipose stem cells varies with culture conditions.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Leslie SK, Cohen DJ, Boyan BD, Schwartz Z<br><font color=gray><i>Journal of biomedical materials research. Part B, Applied biomaterials J Biomed Mater Res B Appl Biomater Production of osteogenic and angiogenic factors by microencapsulated adipose stem cells varies with culture conditions. 1857-1867 10.1002/jbm.b.34527 Growth factors produced by stem cells aid in the bone repair process. We investigated the ability of encapsulated rat adipose-derived stem cells (rASCs) treated with osteogenic media (OM) to produce growth factors, and determined the optimal combination of OM components that will lead to the production of both osteogenic and angiogenic factors. Our results demonstrate that microencapsulated stem cells were able to produce vascular endothelial growth factor (VEGF), fibroblast growth factor-2, and bone morphogenetic protein-2 (BMP2) necessary for bone regeneration. OM led to the reduction of angiogenic factors; however, the removal of dexamethasone restored angiogenic factor production. Additionally, we determined whether the effect of dexamethasone on VEGF and BMP2 varied among rat, rabbit, mouse, and humans. Dexamethasone led to a reduction in VEGF levels in ASCs derived from rats, mice, and humans, while this reduction was absent in rabbit ASCs (rbASCs). Human ASCs (hASCs) from donors of different race and sex showed a similar response to dexamethasone with secreted VEGF levels. BMP2 levels secreted by rbASCs, mouse ASCs (mASCs), and hASCs were independent of the media treatments, while rASCs responded differently in the surrounding media and within the microbeads. In conclusion, microencapsulated ASCs can be treated to produce osteogenic and angiogenic factors for tissue regeneration applications, but outcomes may vary with culture conditions. © 2019 Wiley Periodicals, Inc. Leslie Shirae K SK College of Engineering, Virginia Commonwealth University, Richmond, Virginia. Cohen David Joshua DJ College of Engineering, Virginia Commonwealth University, Richmond, Virginia. Boyan Barbara D BD College of Engineering, Virginia Commonwealth University, Richmond, Virginia. Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia. Schwartz Zvi Z College of Engineering, Virginia Commonwealth University, Richmond, Virginia. Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas. eng Spheringenics, Inc. W81XWH-08-1-0704 U.S. Department of Defense W81XWH-11-C-0071 U.S. Department of Defense Department of Defense Journal Article 2019 12 24 United States J Biomed Mater Res B Appl Biomater 101234238 1552-4973 IM bone formation cell encapsulation hydrogel protein secretion stem cells 2019 08 05 2019 10 28 2019 11 16 2019 12 25 6 0 2019 12 25 6 0 2019 12 25 6 0 ppublish 31872938 10.1002/jbm.b.34527 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by semaphorin 3A.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Lotz EM, Berger MB, Boyan BD, Schwartz Z<br><font color=gray><i>Bone, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Lotz EM, Cohen DJ, Schwartz Z, Boyan BD<br><font color=gray><i>Clinical oral implants research Clin Oral Implants Res Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention. 374-387 10.1111/clr.13575 This study determined whether implant surfaces that promote osseointegration in normal rats can promote osseointegration in osteoporotic rats without pharmacologic intervention. Virgin female 8-month-old CD Sprague Dawley rats (N = 25) were ovariectomized. At 6 weeks, microstructured/non-nanostructured/hydrophobic, microstructured/nanostructured/hydrophobic, or microstructured/nanostructured/hydrophilic Ti implants (Ø2.5 × 3.5 mm; Institut Straumann AG, Basel, Switzerland) were placed in the distal metaphysis of each femur. At 28 days, bone quality and implant osseointegration were assessed using microCT, histomorphometrics, and removal torque values (RTVs). Calvarial osteoblasts were isolated and cultured for 7 days on Ø15 mm Ti disks processed to exhibit similar surface characteristics as the implants used for the in vivo studies. The phenotype was assessed by measuring the production of osteocalcin, osteoprotegerin, osteopontin, BMP2, VEGF, and RANKL. Microstructured/nanostructured/hydrophilic implants promoted increased bone-to-implant contact and RTVs in vivo and increased osteoblastic marker production in vitro compared to microstructured/non-nanostructured/hydrophobic and microstructured/nanostructured/hydrophobic implants, suggesting that osseointegration occurs in osteoporotic animals, and implant surface properties improve its rate. Although all modified implants were able to osseointegrate in rats with OVX-induced osteoporosis without pharmacologic intervention, the degree of osseointegration was greater around microstructured/nanostructured/hydrophilic implant surfaces. These results suggest that when appropriate microstructure is present, hydrophilicity has a greater influence on Ti implant osseointegration compared to nanostructures. Moreover, modified implant surfaces can exert their control over the altered bone turnover observed in osteoporotic patients to stimulate functional osseointegration. These results provide critical insight for developing implants with improved osseointegration in patients with metabolic disorders of bone remodeling. © 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Lotz Ethan M EM Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Cohen David J DJ Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Schwartz Zvi Z https://orcid.org/0000-0003-1612-9223 Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Boyan Barbara D BD https://orcid.org/0000-0002-9642-0311 Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. eng R01AR052102 AR NIAMS NIH HHS United States R01AR072500 AR NIAMS NIH HHS United States R01AR052102 AR NIAMS NIH HHS United States R01AR072500 AR NIAMS NIH HHS United States Journal Article 2020 01 31 Denmark Clin Oral Implants Res 9105713 0905-7161 0 Dental Implants D1JT611TNE Titanium D Animals Dental Implants Female Humans Osseointegration Ovariectomy Rats Rats, Sprague-Dawley Surface Properties Switzerland Titanium animal experiments biomaterials bone implant interactions surface chemistry 2019 05 20 2019 12 03 2020 01 04 2020 1 19 6 0 2020 4 9 6 0 2020 1 19 6 0 ppublish 31953969 10.1111/clr.13575 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Epithelial domains and the primordial antennal nervous system of the embryonic grasshopper Schistocerca gregaria.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Boyan G, Ehrhardt E<br><font color=gray><i>Invertebrate neuroscience : IN, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Loss of Estrogen Receptors is Associated with Increased Tumor Aggression in Laryngeal Squamous Cell Carcinoma.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Verma A, Schwartz N, Cohen DJ, Patel V, Nageris B, Bachar G, Boyan BD, Schwartz Z<br><font color=gray><i>Scientific reports, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Acellular mineralized allogenic block bone graft does not remodel during the 10 weeks following concurrent implant placement in a rabbit femoral model.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Cohen DJ, Scott KM, Kulkarni AN, Wayne JS, Boyan BD, Schwartz Z<br><font color=gray><i>Clinical oral implants research Clin Oral Implants Res Acellular mineralized allogenic block bone graft does not remodel during the 10 weeks following concurrent implant placement in a rabbit femoral model. 37-48 10.1111/clr.13544 Due to bone loss, endosseous implants often require addition of a bone graft to support adequate primary fixation, bone regeneration, and osseointegration. The aim of this study was to compare effectiveness of autogenic and allogenic bone grafts when used during simultaneous insertion of the implant. 4-mm-diameter rabbit diaphyseal bone autografts or allografts (n = 16/group) with a 3.2-mm pre-drilled hole in the center were placed into a 4 mm defect in the proximal femur of 3.5 kg male New Zealand White rabbits. Machined 3.2 × 10 mm grit-blasted, acid-etched titanium-aluminum-vanadium (Ti6Al4V) implants were placed. Control implants were placed into progressively drilled 3.2-mm holes in the contralateral limbs. Post-insertion day 70, samples were analyzed by micro-CT and calcified histology, or by mechanical torque and push-out testing followed by decalcified histology. Both grafts were integrated with the native bone. Micro-CT showed less bone volume (BV) and bone volume/total volume (BV/TV) in the allograft group, but histology showed no differences in BV or BV/TV between groups. Allograft lacked living cells, whereas autograft was cellularized. No difference was found in maximum removal torque between groups. Compressive loading at the graft-to-bone interface was significantly lower in allograft compared with autograft groups. There was less bone in contact with the implant and significantly less maximum compressive load in the allograft group compared with autograft. The allograft remained acellular as demonstrated by empty lacunae. Taken together, block allograft implanted simultaneously with an implant produces a poorer quality bone compared with autograft. © 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Cohen D Joshua DJ College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Scott Kayla M KM College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Kulkarni Aniket N AN College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Wayne Jennifer S JS College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Boyan Barbara D BD https://orcid.org/0000-0002-9642-0311 College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. Schwartz Zvi Z https://orcid.org/0000-0003-1612-9223 College of Engineering, Virginia Commonwealth University, Richmond, VA, USA. Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. eng AB Dental Journal Article 2019 10 10 Denmark Clin Oral Implants Res 9105713 0905-7161 0 Dental Implants D1JT611TNE Titanium D Animals Bone Transplantation Dental Implantation, Endosseous Dental Implants Femur Male Osseointegration Rabbits Titanium CT Imaging animal experiments bone implant interactions bone substitutes guided tissue regeneration/bone regeneration histopathology/host mechanisms morphometric analysis periodontology 2019 05 08 2019 07 22 2019 09 08 2019 9 24 6 0 2020 1 14 6 0 2019 9 24 6 0 ppublish 31545532 10.1111/clr.13544 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Verma A, Schwartz N, Cohen DJ, Boyan BD, Schwartz Z<br><font color=gray><i>Steroids, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Boyan&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>