Pubmed    Pubmed Central
uBio Home | uBioRSS


 uBio  Web Results 1 - 3 of about 3

Broader Terms:
   Plantae (plants) 

More Specific:
   Rhodophyta (red algae) 
Latest Articles on Biliphyta from uBioRSS

1.  Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi.LinkIT
Cavalier-Smith T
ProtoplasmaProtoplasmaCiliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi.10.1007/s00709-021-01665-7I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.© 2021. The Author(s).Cavalier-SmithThomasTDepartment of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK. Environment Research Council (UK)Journal ArticleReview20211223AustriaProtoplasma98068530033-183XIMAcorn-V filamentsGlaucophytaInfrakingdom RhodariaPicozoaRhodelphisTransitional plate202009212021050320211224602021122460202112231252aheadofprint3494090910.1007/s00709-021-01665-710.1007/s00709-021-01665-7References, 2021</i></font><br><font color=#008000><br></font></span><br>2.  <a href= class=title>Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Deschamps P, Moreira D<br><font color=gray><i>Molecular biology and evolution, 2009</i></font><br><font color=#008000><br></font></span><br>3.  <a href= class=title>Eukaryote kingdoms: seven or nine?</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Cavalier-Smith T<br><font color=gray><i>Bio Systems, 1981</i></font><br><font color=#008000><br></font></span><br></table></tr></table></td><script src="" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>