Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 21 - 30 of about 884

Scientific:
   Caffrogobius nudiceps (Barehead goby) 

Synonyms:
   Caffrogobius caffer (Banded goby) 
   Caffrogobius gilchristi (Prison goby) 
   Caffrogobius natalensis (baldy) 
   Caffrogobius nudiceps (Barehead goby) 
   Gobius nudiceps (Barehead goby) 

Broader Terms:
   Barehead 
   Caffrogobius 
   Gobius (gobies) 
   Perciformes (perch-like fishes) 
 
 
Latest Articles on Barehead goby from uBioRSS
Population Structure and Phylogeography of the Short-Tailed Stingray, Dasya... - PubMed: species
Plankton Dynamics Associated with the Convergence Zone of a Shear Front in ... - BioOne: African Zoology


External Resources:



21.  Effects of seawater acclimation on two Na+/K+-ATPase ?-subunit isoforms in the gills of the marble goby, Oxyeleotris marmorata.LinkIT
Pang CZ, Ip YK, Chew SF
Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

22.  Development of delivery system based on marine chitosan: Encapsulationand release kinetic study of antioxidant peptides from chitosan microparticle.LinkIT
Nasri R, Hamdi M, Touir S, Li S, Karra-Chaâbouni M, Nasri M
International journal of biological macromolecules, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

23.  Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population.LinkIT
Hirase S, Tezuka A, Nagano AJ, Sato M, Hosoya S, Kikuchi K, Iwasaki W
Evolution; international journal of organic evolution Evolution Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population. 176-194 10.1111/evo.14120 Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747-Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA-sequencing, RAD-sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA-sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO-lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage-specific selection on mitochondria-related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population. © 2020 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution. Hirase Shotaro S Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan. Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan. Tezuka Ayumi A Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan. Nagano Atsushi J AJ Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan. Sato Mana M Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan. Hosoya Sho S Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan. Kikuchi Kiyoshi K Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan. Iwasaki Wataru W Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan. Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan. Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan. Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan. eng KAKENHI 221S0002 Ministry of Education, Culture, Sports, Science, and Technology Japan Science and Technology Agency (CREST) Mikimoto Fund for Marine Ecology, Fujiwara Natural History Foundation Canon Foundation Interdisciplinary Collaborative Research Program Cooperative Program of the Atmosphere and Ocean Research Institute, the University of Tokyo KAKENHI 23710231 Japan Society for the Promotion of Science 23370041 Japan Society for the Promotion of Science 26850131 Japan Society for the Promotion of Science 18H02493 Japan Society for the Promotion of Science 17K19280 Japan Society for the Promotion of Science 16H06279 : 15J06937 Japan Society for the Promotion of Science Journal Article 2020 11 30 United States Evolution 0373224 0014-3820 IM Dobzhansky-Muller incompatibility hybridization microRNA mitonuclear interactions oxidative phosphorylation secondary contact 2019 12 18 2020 08 14 2020 09 30 2020 11 10 6 0 2020 11 10 6 0 2020 11 9 14 28 ppublish 33165944 10.1111/evo.14120 LITERATURE CITED, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>24.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Genetic diversity of <i>Rhinogobius delicatus</i> (Perciformes: Gobiidae): origins of the freshwater fish in East Taiwan.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ju YM, Wu JH, Hsu KC, Chiu YW, Wang WK, Chen CW, Lin HD<br><font color=gray><i>Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>25.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Prolific pioneers and reserved settlers. Changes in the life-history of the western tubenose goby (Proterorhinus semilunaris) at different invasion stages.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Grabowska J, Tarkan AS, B?o?ska D, Top Karaku? N, Janic B, Przybylski M<br><font color=gray><i>The Science of the total environment, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>26.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The forgotten feeding ground: patterns in seasonal and depth-specific food intake of adult cod Gadus morhua in the western Baltic Sea.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Funk S, Frelat R, Möllmann C, Temming A, Krumme U<br><font color=gray><i>Journal of fish biology J Fish Biol The forgotten feeding ground: patterns in seasonal and depth-specific food intake of adult cod Gadus morhua in the western Baltic Sea. 10.1111/jfb.14615 This study presents the diet composition of western Baltic cod Gadus morhua based on 3150 stomachs sampled year-round between 2016 and 2017 using angling, gillnetting and bottom trawling, which enhanced the spatio-temporal coverage of cod habitats. Cod diet composition in shallow areas (<20?m depth) was dominated by benthic invertebrate species, mainly the common shore crab Carcinus maneas. Compared to historic diet data from the 1960s and 1980s (limited to depth >20?m), the contribution of herring Clupea harengus decreased and round goby Neogobius melanostomus occurred as a new prey species. Statistical modelling revealed significant relationships between diet composition, catch depth, fish length and season. Generalized additive modelling identified a negative relationship between catch depth and stomach content weight, suggesting reduced food intake in winter when cod use deeper areas for spawning and during peak summer when cod tend to avoid high water temperatures. The results of this study highlight the importance of shallow coastal areas as major feeding habitats of adult cod in the western Baltic Sea, which were previously unknown because samples were restricted to deeper trawlable areas. The results strongly suggest that historic stomach analyses overestimated the role of forage fish and underestimated the role of invertebrate prey. Eventually, this study shows the importance of a comprehensive habitat coverage for unbiased stomach sampling programmes to provide a more reliable estimation of top predator diet, a key information for food web analyses and multispecies models. © 2020 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. Funk Steffen S https://orcid.org/0000-0001-5973-5624 Department of Biology, Institute of Marine Ecosystem and Fishery Science, Centre for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany. Frelat Romain R Department of Biology, Institute of Marine Ecosystem and Fishery Science, Centre for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany. Aquaculture and Fisheries Group, Wageningen University, Wageningen, The Netherlands. Möllmann Christian C Department of Biology, Institute of Marine Ecosystem and Fishery Science, Centre for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany. Temming Axel A Department of Biology, Institute of Marine Ecosystem and Fishery Science, Centre for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany. Krumme Uwe U Thünen Institute of Baltic Sea Fisheries, Rostock, Germany. eng 03F0772A BONUS BLUEWEBS project, supported by BONUS (Art 185), funded jointly by the EU, the Academy of Finland, Projektträger Jülich Germany, the State Education Development Agency of Latvia, the National Centre for Research and Development Poland, and the Swedish Research Council Formas 01LC17058 Bundesministerium für Bildung und Forschung Federal Ministry of Education and Research Swedish Research Council Formas National Centre for Research and Development State Education Development Agency European Parliament European Union European Maritime and Fisheries Fund Journal Article 2020 11 17 England J Fish Biol 0214055 0022-1112 IM Atlantic cod, Belt Sea, diet composition, feeding ecology, stomach content analysis, western Baltic cod 2020 06 16 2020 11 05 2020 11 15 2020 11 18 6 0 2020 11 18 6 0 2020 11 17 6 26 aheadofprint 33200410 10.1111/jfb.14615 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>27.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Sensing the structural characteristics of surfaces: texture encoding by a bottom-dwelling fish.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hardy AR, Hale ME<br><font color=gray><i>The Journal of experimental biology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>28.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Sediment contamination and toxic effects on Violet Goby fish (Gobioides broussonnetii - Gobiidae) from a marine protected area in South Atlantic.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Salgado LD, Marques AEML, Kramer RD, Garrido de Oliveira F, Moretto SL, Alves de Lima B, Prodocimo MM, Cestari MM, Azevedo JCR, Silva de Assis HC<br><font color=gray><i>Environmental research, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>29.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Using environmental DNA and occupancy modelling to estimate rangewide metapopulation dynamics.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Martel CM, Sutter M, Dorazio RM, Kinziger AP<br><font color=gray><i>Molecular ecology Mol Ecol Using environmental DNA and occupancy modelling to estimate rangewide metapopulation dynamics. 10.1111/mec.15693 We demonstrate the power of combining two emergent tools for resolving rangewide metapopulation dynamics. First, we employed environmental DNA (eDNA) surveys to efficiently generate multiseason rangewide site occupancy histories. Second, we developed a novel dynamic, spatial multiscale occupancy model to estimate metapopulation dynamics. The model incorporates spatial relationships, explicitly accounts for non-detection bias and allows direct evaluation of the drivers of extinction and colonization. We applied these tools to examine metapopulation dynamics of endangered tidewater goby, a species endemic to California estuarine habitats. We analysed rangewide eDNA data from 190 geographically isolated sites (813 total water samples) surveyed from 2 years (2016 and 2017). Rangewide estimates of the proportion of sites that were occupied varied little between 2016 (0.52) and 2017 (0.51). However, there was evidence of extinction and colonization dynamics. The probability of extinction of an occupied site (0.106) and probability of colonization of an unoccupied site (0.085) were nearly equal. Stability in site occupancy proportions combined with nearly equal rates of extinction and colonization suggests a dynamic equilibrium between the 2 years surveyed. Assessment of covariate effects revealed that colonization probability increased as the number of occupied neighbouring sites increased and as distance between occupied sites decreased. We show that eDNA surveys can rapidly provide a snapshot of a species distribution over a broad geographic range and, when these surveys are paired with occupancy modelling, can uncover metapopulation dynamics and their drivers. © 2020 John Wiley & Sons Ltd. Martel Chad M CM Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA. Sutter Michael M Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA. Dorazio Robert M RM Leading Edge Statistical Consulting, LLC, Brisbane, CA, USA. Kinziger Andrew P AP https://orcid.org/0000-0002-8776-6230 Department of Fisheries Biology, Humboldt State University, Arcata, CA, USA. eng California Department of Transportation United States Fish and Wildlife Service Journal Article 2020 10 15 England Mol Ecol 9214478 0962-1083 IM Eucyclogobius kristinae Eucyclogobius newberryi dynamic occupancy model environmental DNA metapopulation dynamics multiscale occupancy spatial occupancy tidewater goby 2019 12 20 2020 09 26 2020 10 07 2020 10 17 6 0 2020 10 17 6 0 2020 10 16 6 1 aheadofprint 33063415 10.1111/mec.15693 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>30.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Dietary Niche and Growth Rate of the Nonnative Tubenose Goby <i>(Proterorhinus semilunaris)</i> in the Lake Superior Basin.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Dawson B, Peterson G, Hrabik T, Hoffman J<br><font color=gray><i>Journal of Great Lakes research, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=2><img src=p.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=1><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=11><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=12><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=4><img src=rtal.png border=0></a></td></tr><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=2>«</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=1>1</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=2>2</a></td><td align=center>3</td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=11>11</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=12>12</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barehead+goby&category=l&client=pubmed&startPage=4>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>