Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 779

Synonyms:
   Barbulifer mexicanus (saddlebanded goby) 

Broader Terms:
   Barbulifer 
   Perciformes (perch-likes) 
 
 
Latest Articles on Barbulifer mexicanus from uBioRSS
Corrections to ‘Common and Scientific Names of Fishes from the United... - Copeia


External Resources:

Common Names: Gobio, 墨西哥胡鰕虎鱼, gobio alambrón, saddlebanded goby, gobio alambrón, 墨西哥鬍鰕虎魚



1.  Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease.LinkIT
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC
Journal of experimental zoology. Part B, Molecular and developmental evolution J. Exp. Zool. B Mol. Dev. Evol. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. 10.1002/jez.b.22978 A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species. © 2020 Wiley Periodicals LLC. McGaugh Suzanne E SE http://orcid.org/0000-0003-3163-3436 Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota. Kowalko Johanna E JE http://orcid.org/0000-0002-3286-2954 The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida. Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. Duboué Erik E http://orcid.org/0000-0003-3303-5149 The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida. Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. Lewis Peter P The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida. Franz-Odendaal Tamara A TA http://orcid.org/0000-0003-4883-2677 Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada. Rohner Nicolas N http://orcid.org/0000-0003-3248-2772 Stowers Institute for Medical Research, Kansas City, Missouri. Gross Joshua B JB http://orcid.org/0000-0002-0032-1053 Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio. Keene Alex C AC http://orcid.org/0000-0001-6118-5537 The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida. eng DE025033 GF NIH HHS United States GM127872 GF NIH HHS United States DEB-1754231 NSF EDGE 1923372 NSF IOS-1933428 NSF DEB-1457630 NSF US-Israel BSF award Discovery Grant #328376 Natural Sciences and Engineering Research Council of Canada Journal Article 2020 07 07 United States J Exp Zool B Mol Dev Evol 101168228 1552-5007 IM 6th Astyanax international meeting, 2019 Astyanax mexicanus cavefish meeting report 2019 12 29 2020 06 15 2020 06 16 2020 7 9 6 0 2020 7 9 6 0 2020 7 9 6 0 aheadofprint 32638529 10.1002/jez.b.22978 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Sifuentes-Romero I, Ferrufino E, Thakur S, Laboissonniere LA, Solomon M, Smith CL, Keene AC, Trimarchi JM, Kowalko JE<br><font color=gray><i>Journal of experimental zoology. Part B, Molecular and developmental evolution J. Exp. Zool. B Mol. Dev. Evol. Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations. 10.1002/jez.b.22977 Evolution in similar environments often leads to convergence of behavioral and anatomical traits. A classic example of convergent trait evolution is the reduced traits that characterize many cave animals: reduction or loss of pigmentation and eyes. While these traits have evolved many times, relatively little is known about whether these traits repeatedly evolve through the same or different molecular and developmental mechanisms. The small freshwater fish, Astyanax mexicanus, provides an opportunity to investigate the repeated evolution of cave traits. A. mexicanus exists as two forms, a sighted, surface-dwelling form and at least 29 populations of a blind, cave-dwelling form that initially develops eyes that subsequently degenerate. We compared eye morphology and the expression of eye regulatory genes in developing surface fish and two independently evolved cavefish populations, Pachón and Molino. We found that many of the previously described molecular and morphological alterations that occur during eye development in Pachón cavefish are also found in Molino cavefish. However, for many of these traits, the Molino cavefish have a less severe phenotype than Pachón cavefish. Further, cave-cave hybrid fish have larger eyes and lenses during early development compared with fish from either parental population, suggesting that some different changes underlie eye loss in these two populations. Together, these data support the hypothesis that these two cavefish populations evolved eye loss independently, yet through some of the same developmental and molecular mechanisms. © 2020 Wiley Periodicals LLC. Sifuentes-Romero Itzel I Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. Ferrufino Estephany E Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. Thakur Sunishka S Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. Laboissonniere Lauren A LA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa. Solomon Michael M Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. Smith Courtney L CL Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa. Keene Alex C AC http://orcid.org/0000-0001-6118-5537 Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida. Trimarchi Jeffrey M JM Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa. Kowalko Johanna E JE http://orcid.org/0000-0002-3286-2954 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida. eng 1656574 National Science Foundation 1754231 National Science Foundation 1923372 National Science Foundation 1933428 National Science Foundation Journal Article 2020 07 02 United States J Exp Zool B Mol Dev Evol 101168228 1552-5007 IM Astyanax mexicanus cavefish eye loss repeated evolution 2019 11 09 2020 05 05 2020 06 03 2020 7 3 6 0 2020 7 3 6 0 2020 7 3 6 0 aheadofprint 32614138 10.1002/jez.b.22977 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Ontogenetic changes in the venom of Metlapilcoatlus nummifer, the mexican jumping viper.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>García-Osorio B, Lomonte B, Bénard-Valle M, López de León J, Román-Domínguez L, Mejía-Domínguez N, Lara-Hernández F, Alagón A, Neri-Castro E<br><font color=gray><i>Toxicon : official journal of the International Society on Toxinology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A novel microbialite-associated phototrophic Chloroflexi lineage exhibiting a quasi-clonal pattern along depth.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Saghaï A, Zivanovic Y, Moreira D, Tavera R, López-García P<br><font color=gray><i>Genome biology and evolution, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A new species of <i>Creptotrematina</i> (Trematoda: Allocreadiidae) from characid fishes of Brazil: morphological and molecular data.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Alves Dias KG, Pérez-Ponce de León G, de Almeida Camargo A, Müller MI, da Silva RJ, Kozlowiski de Azevedo R, Abdallah VD<br><font color=gray><i>Journal of helminthology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Body condition and poxvirus infection predict circulating glucose levels in a colorful songbird that inhabits urban and rural environments.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>McGraw KJ, Chou K, Bridge A, McGraw HC, McGraw PR, Simpson RK<br><font color=gray><i>Journal of experimental zoology. Part A, Ecological and integrative physiology J Exp Zool A Ecol Integr Physiol Body condition and poxvirus infection predict circulating glucose levels in a colorful songbird that inhabits urban and rural environments. 10.1002/jez.2391 There is widespread contemporary interest in causes and consequences of blood glucose status in humans (e.g., links to diabetes and cardiovascular disease), but we know comparatively less about what underlies variation in glucose levels of wild animals. Several environmental factors, including diet, disease status, and habitat quality, may regulate glucose circulation, and we are in need of work that assesses many organismal traits simultaneously to understand the plasticity and predictability of glucose levels in ecological and evolutionary contexts. Here, we measured circulating glucose levels in a species of passerine bird (the house finch, Haemorhous mexicanus) that has served as a valuable model for research on sexual selection, disease, and urban behavioral ecology, as these animals display sexually dichromatic ornamental coloration, harbor many infectious diseases (e.g., poxvirus, coccidiosis, mycoplasmal conjunctivitis), and reside in both natural habitats and cities. We tested the effects of sex, habitat type, body condition, coccidiosis and poxvirus infections, and expression of carotenoid plumage coloration on blood glucose concentrations and found that the body condition and poxvirus infection significantly predicted circulating glucose levels. Specifically, birds with higher blood glucose levels had higher body condition scores and were infected with poxvirus. This result is consistent with biomedical, domesticated-animal, and wildlife-rehabilitation findings, and the premise that glucose elevation is a physiological response to or indicator of infection and relative body weight. The fact that we failed to find links between glucose and our other measurements suggests that blood glucose levels can reveal some but not all aspects of organismal or environmental quality. © 2020 Wiley Periodicals LLC. McGraw Kevin J KJ http://orcid.org/0000-0001-5196-6620 School of Life Sciences, Arizona State University, Tempe, Arizona. Chou Katherine K Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona. Bridge Annika A Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona. McGraw Hannah C HC Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona. McGraw Peyton R PR Science and Engineering Experience (SCENE) program, Arizona State University, Tempe, Arizona. Simpson Richard K RK http://orcid.org/0000-0002-1319-8197 Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada. eng Journal Article 2020 06 09 United States J Exp Zool A Ecol Integr Physiol 101710204 2471-5638 IM Haemorhous mexicanus blood sugar disease house finch wildlife health 2020 05 02 2020 05 27 2020 05 28 2020 6 10 6 0 2020 6 10 6 0 2020 6 10 6 0 aheadofprint 32515908 10.1002/jez.2391 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Riddle MR, Aspiras AC, Damen F, Hutchinson JN, Chinnapen DJ, Tabin J, Tabin CJ<br><font color=gray><i>Journal of experimental zoology. Part B, Molecular and developmental evolution J. Exp. Zool. B Mol. Dev. Evol. Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus. 10.1002/jez.b.22954 Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves. Caves are devoid of light, eliminating primary production of energy through photosynthesis and, therefore, limiting carotenoid availability. Moreover, the selective pressures that favor carotenoid-based traits, like pigmentation and vision, are relaxed. Astyanax mexicanus is a species of fish with multiple river-adapted (surface) and cave-adapted populations (i.e., Tinaja, Pachón, Molino). Cavefish exhibit regressive features, such as loss of eyes and melanin pigment, and constructive traits, like increased sensory neuromasts and starvation resistance. Here, we show that, unlike surface fish, Tinaja and Pachón cavefish accumulate carotenoids in the visceral adipose tissue. Carotenoid accumulation is not observed in Molino cavefish, indicating that it is not an obligatory consequence of eye loss. We used quantitative trait loci mapping and RNA sequencing to investigate genetic changes associated with carotenoid accumulation. Our findings suggest that multiple stages of carotenoid processing may be altered in cavefish, including absorption and transport of lipids, cleavage of carotenoids into unpigmented molecules, and differential development of intestinal cell types involved in carotenoid assimilation. Our study establishes A. mexicanus as a model to study the genetic basis of natural variation in carotenoid accumulation and how it impacts physiology. © 2020 Wiley Periodicals LLC. Riddle Misty R MR http://orcid.org/0000-0003-4024-2752 Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts. Aspiras Ariel C AC https://orcid.org/0000-0003-0309-8165 Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts. Damen Fleur F Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts. Hutchinson John N JN Department of Biostatistics, The Harvard Chan School of Public Health, Boston, Massachusetts. Chinnapen Daniel J-F DJ Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts. Department of Pediatrics, Harvard Medical School, Boston, Massachusetts. Tabin Julius J Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts. Tabin Clifford J CJ Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts. eng HD089934 National Institute of Child Health and Human Development DK108495 DK NIDDK NIH HHS United States Journal Article 2020 06 02 United States J Exp Zool B Mol Dev Evol 101168228 1552-5007 IM Astyanax mexicanus QTL mapping adipose tissue carotenoids cavefish evolution 2019 09 30 2020 03 25 2020 05 02 2020 6 4 6 0 2020 6 4 6 0 2020 6 4 6 0 aheadofprint 32488995 10.1002/jez.b.22954 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A hypomorphic cystathionine ß-synthase gene contributes to cavefish eye loss by disrupting optic vasculature.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ma L, Gore AV, Castranova D, Shi J, Ng M, Tomins KA, van der Weele CM, Weinstein BM, Jeffery WR<br><font color=gray><i>Nature communications, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Morphological malleability of the lateral line allows for surface fish (Astyanax mexicanus) adaptation to cave environments.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Yoffe M, Patel K, Palia E, Kolawole S, Streets A, Haspel G, Soares D<br><font color=gray><i>Journal of experimental zoology. Part B, Molecular and developmental evolution J. Exp. Zool. B Mol. Dev. Evol. Morphological malleability of the lateral line allows for surface fish (Astyanax mexicanus) adaptation to cave environments. 10.1002/jez.b.22953 The lateral line is the primary modality fish use to create a hydrodynamic image of their environment. These images contribute to a variety of behaviors, from rheotaxis to escape responses. Here we discern the contributions of visual and lateral line modalities in hunting behavior of larvae that have developed under different photic conditions. In particular, cave animals have a hypertrophied sense of mechanosensation, and we studied the common animal model cavefish Astyanax mexicanus and its closest related surface relative. We raised larvae in a diurnal light-dark regimen and in complete darkness. We then examined the distribution of neuromasts in their lateral lines, and their hunting performance in light and dark conditions, with and without the contribution of the lateral line. We report that all larva depend on the lateral line for success in hunting and that surface fish raised in the dark have a greater dependency on the lateral line. © 2020 Wiley Periodicals LLC. Yoffe Marina M Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey. Patel Kush K The University of North Carolina at Chapel Hill, North Carolina. Palia Eric E Westfield High School, Westfield, New Jersey. Kolawole Samuel S Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey. Streets Amy A https://orcid.org/0000-0002-8883-7758 Queensland Brain Institute University of Queensland St. Lucia, St. Lucia, QLD, Australia. Haspel Gal G https://orcid.org/0000-0001-6701-697X Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey. Soares Daphne D http://orcid.org/0000-0002-8161-0841 Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey. eng NIH R15EY027112 EY NEI NIH HHS United States Journal Article 2020 05 20 United States J Exp Zool B Mol Dev Evol 101168228 1552-5007 IM adaptation caves evolution fish lateral line preadaptation 2019 10 09 2020 04 02 2020 04 04 2020 5 22 6 0 2020 5 22 6 0 2020 5 22 6 0 aheadofprint 32436310 10.1002/jez.b.22953 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Complex interactions between bacteria and haemosporidia in coinfected hosts: An experiment.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Reinoso-Pérez MT, Dhondt KV, Sydenstricker AV, Heylen D, Dhondt AA<br><font color=gray><i>Ecology and evolution, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Barbulifer+mexicanus&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>