Did you mean: Amfiprion ?
Common Names: anemonefishes
 1. Transcription profile, NF-?B promoter activation, and antiviral activity of Amphiprion clarkii Akirin-2.
Shanaka KASN, Madushani KP, Madusanka RK, Tharuka MDN, Sellaththurai S, Yang H, Jung S, Lee J Fish & shellfish immunology, 2021 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
2. Sensory cues underlying competitive growth in the clown anemonefish (Amphiprion percula).
Desrochers L, Branconi R, Schlatter E, Dent B, Buston P Behavioural processes, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
3. Characterization of a new cell line from ornamental fish Amphiprion ocellaris (Cuvier, 1830) and its susceptibility to nervous necrosis virus.
Yashwanth BS, Goswami M, Kooloth Valappil R, Thakuria D, Chaudhari A Scientific reports, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
4. Quantifying dispersal variability among nearshore marine populations.
Catalano KA, Dedrick AG, Stuart MR, Puritz JB, Montes HR, Pinsky ML Molecular ecology Mol Ecol Quantifying dispersal variability among nearshore marine populations. 10.1111/mec.15732 Dispersal drives diverse processes from population persistence to community dynamics. However, the amount of temporal variation in dispersal and its consequences for metapopulation dynamics is largely unknown for organisms with environmentally driven dispersal (e.g., many marine larvae, arthropods and plant seeds). Here, we used genetic parentage analysis to detect larval dispersal events in a common coral reef fish, Amphiprion clarkii, along 30 km of coastline consisting of 19 reef patches in Ormoc Bay, Leyte, Philippines. We quantified variation in the dispersal kernel across seven years (2012-2018) and monsoon seasons with 71 parentage assignments from 791 recruits and 1,729 adults. Connectivity patterns differed significantly among years and seasons in the scale and shape but not in the direction of dispersal. This interannual variation in dispersal kernels introduced positive temporal covariance among dispersal routes that theory predicts is likely to reduce stochastic metapopulation growth rates below the growth rates expected from only a single or a time-averaged connectivity estimate. The extent of variation in mean dispersal distance observed here among years is comparable in magnitude to the differences across reef fish species. Considering dispersal variation will be an important avenue for further metapopulation and metacommunity research across diverse taxa. © 2020 John Wiley & Sons Ltd. Catalano Katrina A KA https://orcid.org/0000-0003-0623-4919 Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. Dedrick Allison G AG https://orcid.org/0000-0002-2661-7274 Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. Stuart Michelle R MR Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. Puritz Jonathan B JB https://orcid.org/0000-0003-1404-4680 Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA. Montes Humberto R HR Jr Visayas State University, Baybay City, Leyte, Philippines. Pinsky Malin L ML https://orcid.org/0000-0002-8523-8952 Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA. eng Rutgers, The State University of New Jersey Alfred P. Sloan Foundation Oak Ridge Associated Universities OCE-1426891 National Science Foundation OCE-1430218 National Science Foundation Journal Article 2020 11 16 England Mol Ecol 9214478 0962-1083 IM Amphiprion clarkii connectivity dispersal kernel larval dispersal marine larvae metapopulation 2020 07 17 2020 10 26 2020 11 03 2020 11 17 6 0 2020 11 17 6 0 2020 11 16 17 5 aheadofprint 33197290 10.1111/mec.15732 REFERENCES, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
5. Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish.
Branconi R, Barbasch TA, Francis RK, Srinivasan M, Jones GP, Buston PM Communications biology, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
6. Species integrity, introgression, and genetic variation across a coral reef fish hybrid zone.
Gainsford A, Jones GP, Hobbs JA, Heindler FM, van Herwerden L Ecology and evolution, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
7. Anemonefish, a model for Eco-Evo-Devo.
Roux N, Salis P, Lee SH, Besseau L, Laudet V EvoDevo, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
8. Hematology and Biochemistry Panel Reference Intervals for Captive Saddleback Amphiprion polymnus and Tomato Clownfish Amphiprion frenatus.
Wright SE, Stacy NI, Yanong RP, Juhl RN, Lewbart GA Journal of aquatic animal health, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
9. The complete mitochondrial genome of the Picasso clownfish: genomic comparisons and phylogenetic inference among Amphiprioninae.
He LB, Wu SQ, Luo HY, Zheng LY Mitochondrial DNA. Part B, Resources, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
10. Complete mitochondrial genome of the lemon damsel, Pomacentrus moluccensis (Perciformes, Pomacentridae).
Nam SE, Rhee JS Mitochondrial DNA. Part B, Resources, 2020 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0
|