Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 11 - 20 of about 65271

Synonyms:
   Alphabacteria 

Broader Terms:
   Alphabacteria 
   Bacteria regnum 

More Specific:
   Missing 
 
 


External Resources:



11.  Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient.LinkIT
Bayranvand M, Akbarinia M, Jouzani GS, Gharechahi J, Kooch Y, Baldrian P
FEMS microbiology ecology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

12.  The one hundred year journey of the genus Brucella (Mayer and Shaw 1920).LinkIT
Moreno E
FEMS microbiology reviews, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

13.  Sphingomonas lacunae sp. nov., isolated from a freshwater pond.LinkIT
Sheu SY, Yang CC, Sheu DS, Tsai JM, Chen WM
International journal of systematic and evolutionary microbiology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

14.  Community Organization and Metagenomics of Bacterial Assemblages Across Local Scale pH Gradients in Northern Forest Soils.LinkIT
Yavitt JB, Roco CA, Debenport SJ, Barnett SE, Shapleigh JP
Microbial ecology, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

15.  Cell cycle control and environmental response by second messengers in Caulobacter crescentus.LinkIT
Xu C, Weston BR, Tyson JJ, Cao Y
BMC bioinformatics, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

16.  Streamlined and Abundant Bacterioplankton Thrive in Functional Cohorts.LinkIT
Mondav R, Bertilsson S, Buck M, Langenheder S, Lindström ES, Garcia SL
mSystems, 2020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

17.  Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci.LinkIT
Liu P, Liu Y, Zhao X, Roberts AP, Zhang H, Zheng Y, Wang F, Wang L, Menguy N, Pan Y, Li J
Environmental microbiology Environ Microbiol Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. 10.1111/1462-2920.15254 Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd. Liu Peiyu P Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China. France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China. Liu Yan Y Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China. France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China. Zhao Xiang X Research School of Earth Sciences, Australian National University, Canberra, Australia. Roberts Andrew P AP Research School of Earth Sciences, Australian National University, Canberra, Australia. Zhang Heng H Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. Zheng Yue Y https://orcid.org/0000-0001-5281-3773 Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China. Wang Fuxian F Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China. France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China. Wang Lushan L State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China. Menguy Nicolas N France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China. IMPMC, CNRS UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206, Paris, France. Pan Yongxin Y Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China. France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China. Li Jinhua J https://orcid.org/0000-0003-1622-6170 Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China. eng MGQNLM201704 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology 41621004 National Natural Science Foundation of China 41890843 National Natural Science Foundation of China 41920104009 National Natural Science Foundation of China RVKEXUE2019GZ06 The Senior User Project of RVKEXUE2019GZ06 (Center for Ocean Mega-Science, Chinese Academy of Sciences) DP200100765 Australian Research Council DP140104544 Australian Research Council Journal Article 2020 09 28 England Environ Microbiol 100883692 1462-2912 IM 2020 07 27 2020 09 20 2020 09 24 2020 9 29 6 0 2020 9 29 6 0 2020 9 28 8 47 aheadofprint 32985765 10.1111/1462-2920.15254 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>18.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Iniesto M, Moreira D, Reboul G, Deschamps P, Benzerara K, Bertolino P, Saghaï A, Tavera R, López-García P<br><font color=gray><i>Environmental microbiology Environ Microbiol Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient. 10.1111/1462-2920.15252 Microbialites are usually carbonate-rich sedimentary rocks formed by the interplay of phylogenetically and metabolically complex microbial communities with their physicochemical environment. Yet, the biotic and abiotic determinants of microbialite formation remain poorly constrained. Here, we analysed the structure of prokaryotic and eukaryotic communities associated with microbialites occurring in several crater lakes of the Trans-Mexican volcanic belt along an alkalinity gradient. Microbialite size and community structure correlated with lake physicochemical parameters, notably alkalinity. Although microbial community composition varied across lake microbialites, major taxa-associated functions appeared quite stable with both, oxygenic and anoxygenic photosynthesis and, to less extent, sulphate reduction, as major putative carbonatogenic processes. Despite interlake microbialite community differences, we identified a microbial core of 247 operational taxonomic units conserved across lake microbialites, suggesting a prominent ecological role in microbialite formation. This core mostly encompassed Cyanobacteria and their typical associated taxa (Bacteroidetes, Planctomycetes) and diverse anoxygenic photosynthetic bacteria, notably Chloroflexi, Alphaproteobacteria (Rhodobacteriales, Rhodospirilalles), Gammaproteobacteria (Chromatiaceae) and minor proportions of Chlorobi. The conserved core represented up to 40% (relative abundance) of the total community in lakes Alchichica and Atexcac, displaying the highest alkalinities and the most conspicuous microbialites. Core microbialite communities associated with carbonatogenesis might be relevant for inorganic carbon sequestration purposes. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd. Iniesto Miguel M Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. Moreira David D Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. Reboul Guillaume G https://orcid.org/0000-0002-6424-5176 Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. Deschamps Philippe P Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. Benzerara Karim K Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France. Bertolino Paola P Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. Saghaï Aurélien A Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden. Tavera Rosaluz R Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, DF Mexico, Mexico. López-García Purificación P https://orcid.org/0000-0002-0927-0651 Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. eng ANR-18-CE02-0013-01 Agence Nationale de la Recherche 322669 FP7 Ideas: European Research Council 787904 H2020 European Research Council Journal Article 2020 09 28 England Environ Microbiol 100883692 1462-2912 IM 2020 05 31 2020 08 26 2020 09 23 2020 9 29 6 0 2020 9 29 6 0 2020 9 28 8 47 aheadofprint 32985763 10.1111/1462-2920.15252 References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>19.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Transient Dynamics of Archaea and Bacteria in Sediments and Brine Across a Salinity Gradient in a Solar Saltern of Goa, India.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Mani K, Taib N, Hugoni M, Bronner G, Bragança JM, Debroas D<br><font color=gray><i>Frontiers in microbiology, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>20.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Fluorine and white clover: Assessing fluorine's impact on Rhizobium leguminosarum.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Geretharan T, Jeyakumar P, Bretherton M, Anderson CWN<br><font color=gray><i>Journal of environmental quality J Environ Qual Fluorine and white clover: Assessing fluorine's impact on Rhizobium leguminosarum. 987-999 10.1002/jeq2.20089 The soil fluorine (F) concentration in New Zealand agricultural soils has increased with time as a direct result of the widespread application of phosphate fertilizer to land. Elevated soil F concentrations may potentially harm soil microorganisms, which are important for nutrient cycling and soil formation. Rhizobium leguminosarum is a N2 -fixing soil bacterium that is a fundamental component in New Zealand legume-based pastoral farming. Any impact of F on Rhizobium leguminosarum would have an adverse effect on New Zealand pasture production. In this study, F toxicity to Rhizobium leguminosarum was examined as a first step to develop F guideline values for New Zealand agricultural soils. Bottle-based experiments were conducted to examine the effect of the F- ion on Rhizobium-white clover (Trifolium repens L.) symbiosis by observing nodule morphology and growth. Results indicate that the F- concentration that causes 10% inhibition of Rhizobium respiration (IC10 ) for F- toxicity to Rhizobium leguminosarum was >100 mg F-  L-1 . Significant morphological changes occurred when Rhizobium was exposed to F concentrations of 500 and 1000 mg L-1 . Both light and transmission electron micrographs confirmed that the Rhizobium leguminosarum-white clover interaction was not influenced by F- concentrations >100 mg L-1 . The toxic F- concentration for Rhizobium leguminosarum determined in this study is orders of magnitude higher than the F- concentration in New Zealand agriculture soils under "normal conditions." There appears to be no indication of imminent risk of soil F to Rhizobium leguminosarum. © 2020 The Authors. Journal of Environmental Quality © 2020 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Geretharan Thangavelautham T Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. Dep. of Crop Science, Faculty of Agriculture, Eastern Univ., Vantharumoolai, Chenkalady, 30350, Sri Lanka. Jeyakumar Paramsothy P https://orcid.org/0000-0002-9841-8645 Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. Bretherton Michael M Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. Anderson Christopher W N CWN https://orcid.org/0000-0003-0935-1475 Environmental Sciences Group, School of Agriculture & Environment, Massey Univ., Manawatu, Private Bag 11 222, Palmerston North, 4442, New Zealand. eng Fertiliser Association of New Zealand Journal Article 2020 06 11 United States J Environ Qual 0330666 0047-2425 284SYP0193 Fluorine IM Fluorine New Zealand Rhizobium leguminosarum Symbiosis Trifolium 2019 08 29 2020 04 05 2020 04 16 2020 10 5 8 43 2020 10 6 6 0 2020 10 7 6 0 ppublish 33016489 10.1002/jeq2.20089 REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=1><img src=p.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=1><img src=o_yellow.png border=0></a></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=10><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=11><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=3><img src=rtal.png border=0></a></td></tr><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=1>«</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=1>1</a></td><td align=center>2</td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=10>10</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=11>11</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Alphabacteria&category=l&client=pubmed&startPage=3>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>