Pubmed    Pubmed Central
uBio Home | uBioRSS


 uBio  Web Results 1 - 10 of about 18

Broader Terms:

More Specific:
   Streptoalloteichus hindustanus 
   Verrucomicrobium spinosum 
   Vitreoscilla beggiatoides 
   Vitreoscilla filiformis 
   Vitreoscilla stercoraria 
   environmental samples 
Latest Articles on Acidobacteriales from uBioRSS
Roseimicrobium gellanilyticum gen. nov., sp. nov., a new member of the clas... - PubMed: species

External Resources:

1.  Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil.LinkIT
Wang JL, Liu KL, Zhao XQ, Zhang HQ, Li D, Li JJ, Shen RF
The Science of the total environment, 2021

2.  Potential microbial bioindicators of phosphorus mining in a temperate deciduous forest.LinkIT
Mason LM, Eagar A, Patel P, Blackwood CB, DeForest JL
Journal of applied microbiologyJ Appl MicrobiolPotential microbial bioindicators of phosphorus mining in a temperate deciduous forest.109-12210.1111/jam.14761The soil microbial community plays a critical role in increasing phosphorus (P) availability in low-P, weathered soils by "mining" recalcitrant organic P through the production of phosphatase enzymes. However, there is a lack of data on the fungal and bacterial taxa which are directly involved in P mining, which could also serve as potential microbial bioindicators of low P availability.Leveraging a 5-year P enrichment experiment on low-P forest soils, high-throughput sequencing was used to profile the microbial community to determine which taxa associate closely with P availability. We hypothesized that there would be a specialized group of soil micro-organisms that could access recalcitrant P and whose presence could serve as a bioindicator of P mining. Community profiling revealed several candidate bioindicators of P mining (Russulales, Acidobacteria Subgroup 2, Acidobacteriales, Obscuribacterales and Solibacterales), whose relative abundance declined with elevated P and had a significant, positive association with phosphatase production. In addition, we identified candidate bioindicators of high P availability (Mytilinidales, Sebacinales, Chitinophagales, Cytophagales, Saccharimonadales, Opitulales and Gemmatales).This research provides evidence that mitigating P limitation in this ecosystem may be a specialized trait and is mediated by a few microbial taxa.Here, we characterize Orders of soil microbes associated with manipulated phosphorus availability in forest soils to determine bioindicator candidates for phosphorus. Likewise, we provide evidence that the microbial trait to utilize recalcitrant organic forms of P (e.g. P mining) is likely a specialized trait and not common to all members of the soil microbial community. This work further elucidates the role that a complex microbial community plays in the cycling of P in low-P soils, and provides evidence for future studies on microbial linkages to human-induced ecosystem changes.© 2020 The Society for Applied Microbiology.MasonL MLM of Environmental and Plant Biology, Ohio University, Athens, OH, USA.EagarAADepartment of Biological Sciences, Kent State University, Kent, OH, USA.PatelPPDepartment of Biological Sciences, Kent State University, Kent, OH, USA.BlackwoodC BCBDepartment of Biological Sciences, Kent State University, Kent, OH, USA.DeForestJ LJL of Environmental and Plant Biology, Ohio University, Athens, OH, USA.engDEB 0918681National Science FoundationBaker FundOhio UniversityJournal Article20200716EnglandJ Appl Microbiol97062801364-50720Environmental Biomarkers0Soil27YLU75U4WPhosphorusEC Monoester HydrolasesIMBacteriaclassificationgeneticsisolation & purificationmetabolismEnvironmental BiomarkersForestsFungiclassificationgeneticsisolation & purificationmetabolismHumansMicrobiotageneticsPhosphoric Monoester HydrolasesanalysismetabolismPhosphorusanalysismetabolismSoilchemistrySoil MicrobiologyQIIME2amplicon sequencingecosystems ecologyforest ecologymicrobiomephosphorus202002242020061720200624202074602021196020207460ppublish3261907210.1111/jam.14761References, 2021</i></font><br><font color=#008000><br></font></span><br>3.  <a href= class=title>The Total and Active Bacterial Community of the Chlorolichen <i>Cetraria islandica</i> and Its Response to Long-Term Warming in Sub-Arctic Tundra.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Klarenberg IJ, Keuschnig C, Warshan D, Jónsdóttir IS, Vilhelmsson O<br><font color=gray><i>Frontiers in microbiology, 2020</i></font><br><font color=#008000><br></font></span><br>4.  <a href= class=title>Soil bacterial community structure of mixed bamboo and broad-leaved forest based on tree crown width ratio.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Zhang MM, Fan SH, Guan FY, Yan XR, Yin ZX<br><font color=gray><i>Scientific reports, 2020</i></font><br><font color=#008000><br></font></span><br>5.  <a href= class=title>Closely Located but Totally Distinct: Highly Contrasting Prokaryotic Diversity Patterns in Raised Bogs and Eutrophic Fens.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ivanova AA, Beletsky AV, Rakitin AL, Kadnikov VV, Philippov DA, Mardanov AV, Ravin NV, Dedysh SN<br><font color=gray><i>Microorganisms, 2020</i></font><br><font color=#008000><br></font></span><br>6.  <a href= class=title>Root-Associated Microbial Communities of <i>Abies nordmanniana</i>: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Garcia-Lemos AM, Großkinsky DK, Stokholm MS, Lund OS, Nicolaisen MH, Roitsch TG, Veierskov B, Nybroe O<br><font color=gray><i>Frontiers in microbiology, 2019</i></font><br><font color=#008000><br></font></span><br>7.  <a href= class=title>Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R<br><font color=gray><i>Frontiers in microbiology, 2019</i></font><br><font color=#008000><br></font></span><br>8.  <a href= class=title>The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W<br><font color=gray><i>PloS one, 2019</i></font><br><font color=#008000><br></font></span><br>9.  <a href= class=title>Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Männistö M, Vuosku J, Stark S, Saravesi K, Suokas M, Markkola A, Martz F, Rautio P<br><font color=gray><i>FEMS microbiology ecology, 2018</i></font><br><font color=#008000><br></font></span><br>10.  <a href= class=title>'Concord' grapevine nutritional status and chlorosis rank associated with fungal and bacterial root zone microbiomes.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Lewis RW, LeTourneau MK, Davenport JR, Sullivan TS<br><font color=gray><i>Plant physiology and biochemistry : PPB, 2018</i></font><br><font color=#008000><br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=><img src=o_yellow.png border=0></a></td><td align=center><a href=><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=>2</a></td><td align=center><a href=>»</a></td></tr></table></table></tr></table></td><script src="" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>