Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 54092

Scientific:
   Platyhelminthes (flatworms) 

Synonyms:
   Platyhelminthes (flatworm) 
   Turbellaria (planarians) 

Broader Terms:
   Acoelomata 
   Acoelomates 
   Animalia (Animal) 
   Basal 
   Platyhelminthes (flatworms) 
   Platyzoa 
   unclassified 

More Specific:
   Acoela 
   Acoelomorpha 
   Archoophora 
   Catenulida 
   Cestoda (tapeworms) 
   Flatworms flukes 
   Lecithoepitheliata 
   Macrostomida 
   Macrostomorpha 
   Mediofusata 
   Mesozoa 
   Monogenea 
   Mucorhabda 
   Nemertodermatida 
   Neodermata 
   Neorhabdocoela 
   Platyhelminths affinities 
   Polycladida (polyclads) 
   Prolecithophora 
   Proseriata 
   Rhabditophora 
   Rhabdocoela 
   Seriata 
   Trematoda (flukes) 
   Tricladida (triclads) 
   Turbellaria (planarians) 
   Unassigned 
   environmental samples 
   unclassified 
 
 
Latest Articles on flatworms from uBioRSS


Turbellaria
Guiamarina

External Resources:

Common Names: flatworm



1.  GPS-based fine-scale mapping surveys for schistosomiasis assessment: a practical introduction and documentation of field implementation.LinkIT
Trippler L, Ali MN, Ame SM, Ali SM, Kabole F, Hattendorf J, Knopp S
Infectious diseases of poverty, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Morphological and molecular identification of trematode cercariae related with humans and animal health in freshwater snails from a lake and a dam in Myanmar.LinkIT
Bawm S, Khaing NHE, Win SY, Thein SS, Khaing Y, Thaw YN, Soe NC, Chel HM, Hmoon MM, Hayashi N, Htun LL, Katakura K, Nonaka N, Nakao R
Parasitology research, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Is overwintering mortality driving enigmatic declines? Evaluating the impacts of trematodes and the amphibian chytrid fungus on an anuran from hatching through overwintering.LinkIT
Wetsch O, Strasburg M, McQuigg J, Boone MD
PloS one, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Comparative metabolic profiling by 1H-NMR spectroscopy analysis reveals the adaptation of S. mansoni from its host to in vitro culture conditions: a pilot study with ex vivo and GSH-supplemented medium-cultured parasites.LinkIT
Fustaino V, Gimmelli R, Guidi A, Lentini S, Saccoccia F, Petrella G, Cicero DO, Ruberti G
Parasitology research, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

5.  Geographic and taxonomic trends of rising biological invasion costs.LinkIT
Haubrock PJ, Cuthbert RN, Hudgins EJ, Crystal-Ornelas R, Kourantidou M, Moodley D, Liu C, Turbelin AJ, Leroy B, Courchamp F
The Science of the total environment, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

6.  Morphological and molecular characterization of Prosthogonimus falconis n. sp. (Trematoda; Prosthogonimidae), found in a peregrine falcon (Falco peregrinus) (Aves: Falconidae) in the United Arab Emirates.LinkIT
Schuster RK, Gajic B, Procter M, Wibbelt G, Ruibal BA, Qablan M
Journal of helminthology, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

7.  Epidemiological Survey on Echinococcosis in Xinjiang Uygur Autonomous Region, People's Republic of China.LinkIT
Maidinaimu Aibibula, Li B, Shan J, Tian F, Fan J, Wang Y, Zeng Q, Kong W, Ma X, Qi X
Clinical laboratory, 2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

8.  The enemy of my enemy is my friend: Consumption of parasite infectious stages benefits hosts and predators depending on transmission mode.LinkIT
Koprivnikar J
The Journal of animal ecologyJ Anim EcolThe enemy of my enemy is my friend: Consumption of parasite infectious stages benefits hosts and predators depending on transmission mode.4-710.1111/1365-2656.13625Research Highlight: Hobart, B. K., Moss, W. E., McDevitt-Galles, T., Stewart Merrill, T. E., Johnson, P. T. J. (2021). It's a worm-eat-worm world: Consumption of parasite free-living stages protects hosts and benefits predators. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13591 Many parasites and pathogens have infectious stages that are vulnerable to consumption by non-host organisms. This consumption can benefit both the predators that consume this unusual food resource and the hosts which are less likely to encounter infectious propagules. Yet the importance of these benefits may also depend on parasite transmission, which can influence consumer opportunities to feed upon free-living infectious stages. Hobart et al. (2021) report that freshwater snails with high densities of symbiotic oligochaetes are less likely to be parasitized by trematodes (Platyhelminthes) with an 'active' versus 'passive' (motile or stationary, respectively) mode of transmission, supporting a protective effect via oligochaete predation upon infectious propagules. However, these predators benefit from snails harbouring passively acquired infections, and likely achieve their higher abundance from easy access to prey in the form of a second infectious stage emerging from these hosts. Consumption of free-living infectious stages is thus beneficial to hosts and predators, but varies with parasite life history and ecology.© 2021 British Ecological Society.KoprivnikarJanetJhttps://orcid.org/0000-0001-8410-1041Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.eng04622Natural Sciences and Engineering Research Council of CanadaJournal ArticleEnglandJ Anim Ecol03765740021-8790IMconsumptiondilutioninfectious stageparasitepredatortransmission2021101920211101202211172202211260202211260ppublish3501404110.1111/1365-2656.13625REFERENCES, 2022</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>FATAL <i>FASCIOLOIDES MAGNA</i> IN A LESSER SPOT-NOSED GUENON (<i>CERCOPITHECUS PETAURISTA</i>).</ArticleTitle><Pagination><MedlinePgn>1309-1313</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1638/2020-0226</ELocationID><Abstract><AbstractText>A 4-yr-old male intact lesser spot-nosed guenon (<i>Cercopithecus petaurista</i>), housed at a North American zoological facility, presented with acute lethargy, inappetence, and mild neurologic signs. Physical examination revealed hemorrhagic pleural effusion in the right hemithorax. This guenon's condition improved over several days but then deteriorated, and the guenon presented with lethargy and weakness. A hemorrhagic pleural effusion was identified within the left hemithorax. The guenon developed respiratory and cardiac arrest while anesthetized. Gross examination revealed tract formation in the liver, adhesions of the liver to the diaphragm, hemorrhagic thoracic and abdominal effusion, and a single trematode within the right hemithorax. Morphologic features and species identification by PCR confirmed that the parasite was <i>Fascioloides magna</i>. Histologic examination revealed tract formation in the liver associated with biliary hyperplasia, fibrosis and hepatic necrosis, severe bile peritonitis, and pleuritis. This is the first report of an infection by <i>F. magna</i> in a primate.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hasse</LastName><ForeName>Kayla E</ForeName><Initials>KE</Initials><AffiliationInfo><Affiliation>Memphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA, khasse@memphiszoo.org.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Garner</LastName><ForeName>Michael M</ForeName><Initials>MM</Initials><AffiliationInfo><Affiliation>Northwest ZooPath, Monroe, WA 98272, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Knightly</LastName><ForeName>Felicia A</ForeName><Initials>FA</Initials><AffiliationInfo><Affiliation>Memphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sobotyk</LastName><ForeName>Caroline</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX 77843, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Luksovsky</LastName><ForeName>Joe L</ForeName><Initials>JL</Initials><AffiliationInfo><Affiliation>Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX 77843, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verocai</LastName><ForeName>Guilherme G</ForeName><Initials>GG</Initials><AffiliationInfo><Affiliation>Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX 77843, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Zoo Wildl Med</MedlineTA><NlmUniqueID>8915208</NlmUniqueID><ISSNLinking>1042-7260</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000836" MajorTopicYN="N">Animals, Zoo</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002521" MajorTopicYN="Y">Cercopithecus</DescriptorName><QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005212" MajorTopicYN="Y">Fasciolidae</DescriptorName><QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017809" MajorTopicYN="N">Fatal Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName><QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D014201" MajorTopicYN="N">Trematode Infections</DescriptorName><QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2021</Year><Month>07</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>1</Month><Day>9</Day><Hour>17</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>1</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>1</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">34998304</ArticleId><ArticleId IdType="doi">10.1638/2020-0226</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Bowles J, Blair D, McManus DP. Genetic variants within the genus <i>Echinococcus</i> identified by mitochondrial DNA sequencing. Mol Biochem Parasit. 1992; 54(2):165?173.</Citation></Reference><Reference><Citation>Conboy GA, Stromberg BE. Hematology and clinical pathology of experimental <i>Fascioloides magna</i> infection in cattle and guinea pigs. Vet Parasitol. 1991; 40(3?4):241?255.</Citation></Reference><Reference><Citation>Conboy GA, Stromberg BE, Schlotthauer JC. Efficacy of clorsulon against <i>Fascioloides magna</i> infection in sheep. J Am Vet Med Assoc. 1988;192(7):910?912.</Citation></Reference><Reference><Citation>Cornell Wildlife Health Lab [Internet]. Cornell University College of Veterinary Medicine Animal Health Diagnostic Center; 2018. https://cwhl.vet.cornell.edu</Citation></Reference><Reference><Citation>Foreyt WJ. <i>Fascioloides magna</i>: development in selected nonruminant mammalian hosts. Exp Parasitol. 1979;47(2):292?296.</Citation></Reference><Reference><Citation>Foreyt WJ, Todd AC. Development of the large American liver fluke, <i>Fascioloides magna</i>, in white-tailed deer, cattle and sheep. J Parasitol. 1976;62(1):26?32.</Citation></Reference><Reference><Citation>Hoggard KR, Jarriel DM, Bevelock TJ, Verocai GG. Prevalence survey of gastrointestinal and respiratory parasites of shelter cats in northeastern Georgia, USA. Vet Parasitol. 2019; doi: 10.1016/j.vprsr.2019. 100270.</Citation></Reference><Reference><Citation>Jakobek BT, Garner MM, Citino SC, Emerson JA, Wellehan JFX. Fatal hepatic fascioloiasis in two giraffes (<i>Giraffa camelopardalis</i>) attributed to <i>Fascioloides magna</i> with a possible white-tailed deer (<i>Odocoileus virginianus</i>) reservoir host. In: Proc Am Assoc Zoo Vet; 2020. p. 183.</Citation></Reference><Reference><Citation>Lee JK, Rosser TG, Cooley J. Pulmonary embolization of immature <i>Fascioloides magna</i> causing fatal hemothorax confirmed by molecular technique in a heifer in the United States. J Vet Diagn Invest. 2016; 28(5):584?588.</Citation></Reference><Reference><Citation>Malcicka M. Life history and biology of <i>Fascioloides magna</i> (Trematoda) and its native and exotic hosts. J Ecol Evol. 2015;5(7):1381?1397.</Citation></Reference><Reference><Citation>Novobilsky A, Kasny M, Mikes L, Kovarcik K, Koudela B. Humoral immune response during experimental infection with <i>Fascioloides magna</i> and <i>Fasciola hepatica</i> in goats and comparison of their excretory/ secretory products. Parasitol Res. 2007;101(2):357?364.</Citation></Reference><Reference><Citation>Pybus MJ. Liver flukes. In: Samuel WM, Pybus MJ, Kocan A (eds.). Parasitic diseases of wild mammals. 2nd ed. New York (NY): John Wiley; 2001. p. 121?149.</Citation></Reference><Reference><Citation>Qureshi T, Davis D, Drawe DL. Use of albendazole in feed to control <i>Fascioloides magna</i> infections in captive white-tailed deer (<i>Odocoileus virginianus)</i>. J Wildl Dis. 1990;26(2):231?235.</Citation></Reference><Reference><Citation>Rajsky D, Corba J, Varady M, Spakulova M, Cabadaj R. Control of fascioloidosis (<i>Fascioloides magna</i> Bassi, 1875) in red deer and roe deer. Helminthologia. 2002;39(2):67?70.</Citation></Reference><Reference><Citation>Severin K, Masek T, Jaicki Z, Konjevic D. Liver enzymes and blood metabolites in a population of free-ranging red deer (<i>Cervus elaphus</i>) naturally infected with <i>Fascioloides magna</i>. J Helminthol. 2012;86(2):190?196.</Citation></Reference><Reference><Citation>Shury TK, Pybus MJ, Nation N, Cool NL, Rettie WJ. <i>Fascioloides magna</i> in moose (<i>Alces alces</i>) from Elk Island National Park, Alberta. J Vet Pathol. 2019; 56(3):476?485.</Citation></Reference><Reference><Citation>Stromberg BE, Conboy GA, Hayden DW, Schlotthauer JC. Pathophysiologic effects of experimentally induced <i>Fascioloides magna</i> infection in sheep. Am J Vet Res. 1985;46(8):1637?1641.</Citation></Reference><Reference><Citation>Stromberg BE, Schlotthauer JC, Conboy GA. Efficacy of albendazole against <i>Fascioloides magna</i> in sheep. Am J Vet Res. 1984;45(1):80?82.</Citation></Reference><Reference><Citation>Trailovic S, Marinkovic D, Kulisic Z. Diagnosis and therapy of liver fluke (<i>Fascioloides magna)</i> infection in fallow deer (<i>Dama dama</i>) in Serbia. J Wildl Dis. 2016;52(2):319?326.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">35015409</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK576384</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2022</Year><Month>01</Month></PubDate><BeginningDate><Year>2022</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-140071">Ocular Toxocariasis</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Hasse KE, Garner MM, Knightly FA, Sobotyk C, Luksovsky JL, Verocai GG, , Gupta A, Tripathy K<br><font color=gray><i>Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians, 2021</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of zoo and wildlife medicine : official publication of the American Association of Zoo VeterinariansJ Zoo Wildl MedFATAL FASCIOLOIDES MAGNA IN A LESSER SPOT-NOSED GUENON (CERCOPITHECUS PETAURISTA).1309-131310.1638/2020-0226A 4-yr-old male intact lesser spot-nosed guenon (Cercopithecus petaurista), housed at a North American zoological facility, presented with acute lethargy, inappetence, and mild neurologic signs. Physical examination revealed hemorrhagic pleural effusion in the right hemithorax. This guenon's condition improved over several days but then deteriorated, and the guenon presented with lethargy and weakness. A hemorrhagic pleural effusion was identified within the left hemithorax. The guenon developed respiratory and cardiac arrest while anesthetized. Gross examination revealed tract formation in the liver, adhesions of the liver to the diaphragm, hemorrhagic thoracic and abdominal effusion, and a single trematode within the right hemithorax. Morphologic features and species identification by PCR confirmed that the parasite was Fascioloides magna. Histologic examination revealed tract formation in the liver associated with biliary hyperplasia, fibrosis and hepatic necrosis, severe bile peritonitis, and pleuritis. This is the first report of an infection by F. magna in a primate.HasseKayla EKEMemphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA, khasse@memphiszoo.org.GarnerMichael MMMNorthwest ZooPath, Monroe, WA 98272, USA.KnightlyFelicia AFAMemphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA.SobotykCarolineCDepartment of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX 77843, USA.LuksovskyJoe LJLDepartment of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX 77843, USA.VerocaiGuilherme GGGDepartment of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX 77843, USA.engCase ReportsJournal ArticleUnited StatesJ Zoo Wildl Med89152081042-7260IMAnimalsAnimals, ZooCercopithecusparasitologyFasciolidaegeneticsFatal OutcomeLiverMalePolymerase Chain ReactionveterinaryTrematode Infectionsveterinary202107212022191741202211060202211260ppublish3499830410.1638/2020-0226Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasit. 1992; 54(2):165?173.Conboy GA, Stromberg BE. Hematology and clinical pathology of experimental Fascioloides magna infection in cattle and guinea pigs. Vet Parasitol. 1991; 40(3?4):241?255.Conboy GA, Stromberg BE, Schlotthauer JC. Efficacy of clorsulon against Fascioloides magna infection in sheep. J Am Vet Med Assoc. 1988;192(7):910?912.Cornell Wildlife Health Lab [Internet]. Cornell University College of Veterinary Medicine Animal Health Diagnostic Center; 2018. https://cwhl.vet.cornell.eduForeyt WJ. Fascioloides magna: development in selected nonruminant mammalian hosts. Exp Parasitol. 1979;47(2):292?296.Foreyt WJ, Todd AC. Development of the large American liver fluke, Fascioloides magna, in white-tailed deer, cattle and sheep. J Parasitol. 1976;62(1):26?32.Hoggard KR, Jarriel DM, Bevelock TJ, Verocai GG. Prevalence survey of gastrointestinal and respiratory parasites of shelter cats in northeastern Georgia, USA. Vet Parasitol. 2019; doi: 10.1016/j.vprsr.2019. 100270.Jakobek BT, Garner MM, Citino SC, Emerson JA, Wellehan JFX. Fatal hepatic fascioloiasis in two giraffes (Giraffa camelopardalis) attributed to Fascioloides magna with a possible white-tailed deer (Odocoileus virginianus) reservoir host. In: Proc Am Assoc Zoo Vet; 2020. p. 183.Lee JK, Rosser TG, Cooley J. Pulmonary embolization of immature Fascioloides magna causing fatal hemothorax confirmed by molecular technique in a heifer in the United States. J Vet Diagn Invest. 2016; 28(5):584?588.Malcicka M. Life history and biology of Fascioloides magna (Trematoda) and its native and exotic hosts. J Ecol Evol. 2015;5(7):1381?1397.Novobilsky A, Kasny M, Mikes L, Kovarcik K, Koudela B. Humoral immune response during experimental infection with Fascioloides magna and Fasciola hepatica in goats and comparison of their excretory/ secretory products. Parasitol Res. 2007;101(2):357?364.Pybus MJ. Liver flukes. In: Samuel WM, Pybus MJ, Kocan A (eds.). Parasitic diseases of wild mammals. 2nd ed. New York (NY): John Wiley; 2001. p. 121?149.Qureshi T, Davis D, Drawe DL. Use of albendazole in feed to control Fascioloides magna infections in captive white-tailed deer (Odocoileus virginianus). J Wildl Dis. 1990;26(2):231?235.Rajsky D, Corba J, Varady M, Spakulova M, Cabadaj R. Control of fascioloidosis (Fascioloides magna Bassi, 1875) in red deer and roe deer. Helminthologia. 2002;39(2):67?70.Severin K, Masek T, Jaicki Z, Konjevic D. Liver enzymes and blood metabolites in a population of free-ranging red deer (Cervus elaphus) naturally infected with Fascioloides magna. J Helminthol. 2012;86(2):190?196.Shury TK, Pybus MJ, Nation N, Cool NL, Rettie WJ. Fascioloides magna in moose (Alces alces) from Elk Island National Park, Alberta. J Vet Pathol. 2019; 56(3):476?485.Stromberg BE, Conboy GA, Hayden DW, Schlotthauer JC. Pathophysiologic effects of experimentally induced Fascioloides magna infection in sheep. Am J Vet Res. 1985;46(8):1637?1641.Stromberg BE, Schlotthauer JC, Conboy GA. Efficacy of albendazole against Fascioloides magna in sheep. Am J Vet Res. 1984;45(1):80?82.Trailovic S, Marinkovic D, Kulisic Z. Diagnosis and therapy of liver fluke (Fascioloides magna) infection in fallow deer (Dama dama) in Serbia. J Wildl Dis. 2016;52(2):319?326.35015409NBK576384StatPearls PublishingTreasure Island (FL)StatPearls2022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0



1