Pubmed    Pubmed Central
uBio Home | uBioRSS


 uBio  Web Results 1 - 10 of about 17

   Sebastidae (Rockfishes, rockcods and thornyheads) 

Broader Terms:
   Scorpaeniformes (sculpins) 

More Specific:
   Epinephelus (groupers) 
   Holocentrus (squirrelfishes) 
   Perca (yellow perches) 
   Scorpaena (scorpionfishes) 
   Sebastes (rockcod) 
   Sebastichthys proriger 
Latest Articles on Rockfishes, rockcods and thornyheads from uBioRSS
Sebastes marinus (non Linnaeus, 1758) - WoRMS latest edits
Comparative morphology of pre-extrusion larvae, fiSebastes mentella/fi and ... - Latest Issue of Journal of Fish Biology

Holocentrus servus
NYPL Digital Gallery

External Resources:

1.  Hotspots for rockfishes, structural corals, and large-bodied sponges along the central coast of Pacific Canada.LinkIT
Frid A, McGreer M, Wilson KL, Du Preez C, Blaine T, Norgard T
Scientific reports, 2021

2.  Broadbill swordfish (Xiphias gladius) foraging and vertical movements in the north-west Atlantic.LinkIT
Logan JM, Golet W, Smith SC, Neilson J, Van Guelpen L
Journal of fish biologyJ Fish BiolBroadbill swordfish (Xiphias gladius) foraging and vertical movements in the north-west Atlantic.557-56810.1111/jfb.14744The northern edge of Georges Bank is an important seasonal foraging habitat for swordfish (Xiphias gladius) in the North Atlantic, where aggregations support commercial pelagic longline and harpoon fisheries. Following a period of overfishing during the 1990s, the North Atlantic X. gladius stock underwent a period of recovery during the early 2000s and was considered rebuilt in 2009. We analysed stomach contents from X. gladius (n = 39) harvested by the Canadian harpoon fishery on Georges Bank in 2007 to characterize diet in this important foraging habitat. We used electronic tagging data from X. gladius (n = 6) on Georges Bank in 2005-2007 to assess vertical habitat preferences and associated prey composition within those zones. We also used stable isotope analysis (?13 C and ?15 N) of X. gladius liver (n = 2) and common prey types (Paralepididae, Myctophidae, Merluccidae, Ommastrephidae) as a longer-term record of feeding. Stomach contents were co-dominated by Paralepididae [31.9% weight (W)] and Ommastrephidae (36.8%W) with secondary contributions from hake (Merluccidae, 6.5%W), Myctophidae (2.9%W) and Sebastidae (2.1%W). X. gladius displayed diel vertical migrations, descending to depths of 300-400?m during daytime followed by residence in surface waters at night. X. gladius liver ?15 N values were similar to or lower than values of primary stomach contents, likely due to bias of diet consumed in southerly waters with lower nitrogen isotope baselines prior to arrival on Georges Bank. Diet data are similar to results from historical studies from the late 1950s to the early 1980s. This apparent temporal stability to the underlying food web in this region may explain the high X. gladius site fidelity observed in electronic tagging studies and the consistent aggregation of these fish to this region.© 2021 Fisheries Society of the British Isles.LoganJohn MJM Division of Marine Fisheries, New Bedford, Massachusetts, USA.GoletWaltWThe School of Marine Sciences, The University of Maine, Orono, The Gulf of Maine Research Institute, Portland, Maine, USA.SmithSean CSCDepartment of Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.NeilsonJohnJComox, British Columbia, Canada.Van GuelpenLouLAtlantic Reference Centre, Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada.engFisheries and Oceans CanadaUniversity of New Hampshire Marine ProgramJournal Article20210428EnglandJ Fish Biol02140550022-1112IMAnimalsCanadaConservation of Natural ResourcesFisheriesPerciformesSeafoodOmmastrephidaeParalepididaebillfishstomach contentstrophic ecology202103122020081920210331202142602021918602021411243ppublish3379292610.1111/jfb.14744REFERENCES, 2021</i></font><br><font color=#008000><br></font></span><br>3.  <a href= class=title>Characterization of CYP11A1 and its potential role in sex asynchronous gonadal development of viviparous black rockfish Sebastes schlegelii (Sebastidae).</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Wang X, Wen H, Li Y, Lyu L, Song M, Zhang Y, Li J, Yao Y, Li J, Qi X<br><font color=gray><i>General and comparative endocrinology, 2021</i></font><br><font color=#008000><br></font></span><br>4.  <a href= class=title>Comparative analysis of the complete mitochondrial genomes of three rockfishes (Scorpaeniformes, Sebastiscus) and insights into the phylogenetic relationships of Sebastidae.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Jia C, Zhang X, Xu S, Yang T, Yanagimoto T, Gao T<br><font color=gray><i>Bioscience reports, 2020</i></font><br><font color=#008000><br></font></span><br>5.  <a href= class=title>Taxonomic revision of Microcotyle caudata Goto, 1894 parasitic on gills of sebastids (Scorpaeniformes: Sebastidae), with a description of Microcotyle kasago n. sp. (Monogenea: Microcotylidae) from off Japan.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ono N, Matsumoto R, Nitta M, Kamio Y<br><font color=gray><i>Systematic parasitology, 2020</i></font><br><font color=#008000><br></font></span><br>6.  <a href= class=title>The complete mitochondrial genome of rockfish <i>Sebastes oculatus</i> Valenciennes, 1833 from southwest Atlantic ocean.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kim H, Yoon M, Kim HJ<br><font color=gray><i>Mitochondrial DNA. Part B, Resources, 2019</i></font><br><font color=#008000><br></font></span><br>7.  <a href= class=title>A new species of Hamaticolax (Copepoda: Bomolochidae) from Helicolenus dactylopterus (Delaroche, 1809) (Scorpaeniformes: Sebastidae) in NW Mediterranean deep waters and notes on patterns of host use and host-specificity of the genus.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Dallarés S, Constenla M, Carrassón M<br><font color=gray><i>Parasitology research, 2018</i></font><br><font color=#008000><br></font></span><br>8.  <a href= class=title>Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV).</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Doya C, Chatzievangelou D, Bahamon N, Purser A, De Leo FC, Juniper SK, Thomsen L, Aguzzi J<br><font color=gray><i>PloS one, 2017</i></font><br><font color=#008000><br></font></span><br>9.  <a href= class=title>Zygoparity and sex steroid hormone profiles in bluemouth Helicolenus dactylopterus.</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Sequeira V, Couto E, Neves A, Vieira AR, Paiva RB, Canario AVM, Gordo LS<br><font color=gray><i>Journal of fish biology, 2017</i></font><br><font color=#008000><br></font></span><br>10.  <a href= class=title>Complete mitochondrial genome of <i>Hemilepidotus gilberti</i> (Scorpaeniformes: Cottidae).</a><a href=><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Song YS, Kim IH, Kim YK, Kim HN, Kang CB, Kim WB, Kim SY<br><font color=gray><i>Mitochondrial DNA. Part B, Resources, 2016</i></font><br><font color=#008000><br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=><img src=o_yellow.png border=0></a></td><td align=center><a href=><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=>2</a></td><td align=center><a href=>»</a></td></tr></table></table></tr></table></td><script src="" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>