Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 4 of about 4

Synonyms:
   Botrychium lunaria (common moonwort) 
   Botrypus lunaria 
   Osmunda lunaria 

Broader Terms:
   Botrychium (moonwort) 
   Ophioglossales 
   Osmunda 

More Specific:
   Osmunda lunaria beckeana 
   Osmunda lunaria matricariifolia 
 
 
Latest Articles on Osmunda lunaria from uBioRSS
Botryche lunaire (Botrychium lunaria) - PLANT [directory] ?? Photo Pool
A Phylogenetic Investigation of Botrychium s. s. (Ophioglossaceae): Evidenc... - BioOne: Systematic Botany


Botrychium lunaria
BioLib Online Library

External Resources:

Common Names: moonwort, moonwort grapefern, common moonwort, Låsgräs



1.  Transcriptome-wide SNPs for Botrychium lunaria ferns enable fine-grained analysis of ploidy and population structure.LinkIT
Mossion V, Dauphin B, Grant J, Kessler M, Zemp N, Croll D
Molecular ecology resourcesMol Ecol ResourTranscriptome-wide SNPs for Botrychium lunaria ferns enable fine-grained analysis of ploidy and population structure.10.1111/1755-0998.13478Ferns are the second most diverse group of land plants after angiosperms. Extant species occupy a wide range of habitats and contribute significantly to ecosystem functioning. Despite the importance of ferns, most taxa are poorly covered by genomic resources and within-species studies based on high-resolution markers are entirely lacking. The genus Botrychium belongs to the family Ophioglossaceae, which includes species with very large genomes and chromosome numbers (e.g., Ophioglossum reticulatum 2n = 1520). The genus has a cosmopolitan distribution with 35 species, half of which are polyploids. Here, we establish a transcriptome for Botrychium lunaria (L.) Sw., a diploid species with an extremely large genome of about ~19.0-23.7 Gb. We assembled 25,677 high-quality transcripts with an average length of 1,333 bp based on deep RNA-sequencing of a single individual. We sequenced 11 additional transcriptomes of individuals from two populations in Switzerland, including the population of the reference individual. Based on read mapping to reference transcript sequences, we identified 374,463 single nucleotide polymorphisms (SNPs) segregating among individuals for an average density of 14 SNPs per kilobase. We found that all 12 transcriptomes were most likely from diploid individuals. The transcriptome-wide markers provided unprecedented resolution of the population genetic structure, revealing substantial variation in heterozygosity among individuals. We also constructed a phylogenomic tree of 92 taxa representing all fern orders to ascertain the placement of the genus Botrychium. High-quality transcriptomic resources and SNP sets constitute powerful population genomic resources to investigate the ecology, and evolution of fern populations.© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.MossionVincianeVLaboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland.DauphinBenjaminBhttps://orcid.org/0000-0003-0982-4252Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland.Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.GrantJasonJLaboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland.KesslerMichaelMDepartment of Systematic and Evolutionary Botany, University of Zürich, Zurich, Switzerland.ZempNiklausNhttps://orcid.org/0000-0002-0991-5130Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland.CrollDanielDhttps://orcid.org/0000-0002-2072-380XLaboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland.engUniversité de NeuchâtelJournal Article20210726EnglandMol Ecol Resour1014656041755-098XIMOphioglossaceaeSNP developmentfernsploidypopulation genomicstranscriptome assembly20210702202010302021071920217276020217276020217261246aheadofprint3431006610.1111/1755-0998.13478REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Biotic and abiotic factors shape arbuscular mycorrhizal fungal communities associated with the roots of the widespread fern Botrychium lunaria (Ophioglossaceae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Sandoz FA, Bindschedler S, Dauphin B, Farinelli L, Grant JR, Hervé V<br><font color=gray><i>Environmental microbiology reportsEnviron Microbiol RepBiotic and abiotic factors shape arbuscular mycorrhizal fungal communities associated with the roots of the widespread fern Botrychium lunaria (Ophioglossaceae).342-35410.1111/1758-2229.12840Arbuscular mycorrhizal fungi (AMF) play central roles in terrestrial ecosystems by interacting with both above and belowground communities as well as by influencing edaphic properties. The AMF communities associated with the roots of the fern Botrychium lunaria (Ophioglossaceae) were sampled in four transects at 2400?m?a.s.l. in the Swiss Alps and analyzed using metabarcoding. Members of five Glomeromycota genera were identified across the 71 samples. Our analyses revealed the existence of a core microbiome composed of four abundant Glomus operational taxonomic units (OTUs), as well as a low OTU turnover between samples. The AMF communities were not spatially structured, which contrasts with most studies on AMF associated with angiosperms. pH, microbial connectivity and humus cover significantly shaped AMF beta diversity but only explained a minor fraction of variation in beta diversity. AMF OTUs associations were found to be significant by both cohesion and co-occurrence analyses, suggesting a role for fungus-fungus interactions in AMF community assembly. In particular, OTU co-occurrences were more frequent between different genera than among the same genus, rising the hypothesis of functional complementarity among the AMF associated to B. lunaria. Altogether, our results provide new insights into the ecology of fern symbionts in alpine grasslands.© 2020 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.SandozFrédéric AlexandreFALaboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.Conservatoire et Jardin botaniques de la Ville de Genève, Chambésy-Genève, Switzerland.BindschedlerSaskiaSLaboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.DauphinBenjaminBLaboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.FarinelliLaurentLFasteris SA, Plan-les-Ouates, Switzerland.GrantJason RJRLaboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.HervéVincentV0000-0002-3495-561XLaboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.engFonds Wuthrich Mathey-DuprazInternational31003A_156456Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungInternationalCR32I2-149853/1Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen ForschungInternationalCR32I2-149853/1 31003A_156456SNSF_Swiss National Science FoundationSwitzerlandJournal ArticleResearch Support, Non-U.S. Gov't20200406United StatesEnviron Microbiol Rep1014992071758-2229IMFernsmicrobiologyGenes, FungalGlomeromycotaclassificationgeneticsisolation & purificationGrasslandMetagenomicsMicrobial InteractionsMicrobiotaMycobiomegeneticsMycorrhizaegeneticsPhylogenyPlant RootsmicrobiologySoil MicrobiologySwitzerland2019091020200318202003202020328602020121560202032860ppublish3221604610.1111/1758-2229.12840References, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Living on the edge: Conservation genetics of seven thermophilous plant species in a High Arctic archipelago.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Birkeland S, Elisabeth Borgen Skjetne I, Krag Brysting A, Elven R, Greve Alsos I<br><font color=gray><i>AoB PLANTS, 2017</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Isolated, but transnational: the glocal nature of Waldensian ethnobotany, Western Alps, NW Italy.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Bellia G, Pieroni A<br><font color=gray><i>Journal of ethnobiology and ethnomedicine, 2015</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>