Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 16

Synonyms:
   Hexanchidae (cow sharks) 

Broader Terms:
   Hexanchidae (cow sharks) 
   Hexanchiformes (cow sharks) 
   Hexanchoidei 

More Specific:
   Heptanchus 
   Heptrachias 
   Heptranchias 
   Heptrancus 
   Hexanchus (sixgill sharks) 
   Monopterinus 
   Notidanus 
   Notorhinchus 
   Notorhynchus 
   Notorynchus 
   Squalus (Spiny dogfish) 
 
 
Latest Articles on Hexanchidae Gray, 1851 from uBioRSS
Monopterhinus griseus (Bonnaterre, 1788) - WoRMS latest taxa marked as checked
Comparative myology of the mandibular and hyoid arches of sharks of the ord... - Journal of Morphology


External Resources:

Common Names: sixgill sharks, sevengill sharks, Koehaaien, tiburones cañabota, cow sharks, Sechskiemerhaie, grisets, tiburones cañabota



1.  Reproductive Anatomy of Chondrichthyans: Notes on Specimen Handling and Sperm Extraction. II. Sharks and Chimaeras.LinkIT
García-Salinas P, Gallego V, Asturiano JF
Animals : an open access journal from MDPI, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  Checklist of the coral fish fauna of Xisha Islands, China.LinkIT
Qiu S, Chen B, Du J, Loh KH, Liao J, Liu X, Yang W
Biodiversity data journal, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  First records of the seven-gilled Notorynchus cepedianus and six-gilled Hexanchus griseus sharks (Chondrichthyes: Hexanchiformes: Hexanchidae) found in the Galápagos Marine Reserve.LinkIT
Buglass S, Nagy S, Ebert D, Sepa P, Turchik A, Bell KLC, Rivera F, Giddens J
Journal of fish biologyJ Fish BiolFirst records of the seven-gilled Notorynchus cepedianus and six-gilled Hexanchus griseus sharks (Chondrichthyes: Hexanchiformes: Hexanchidae) found in the Galápagos Marine Reserve.926-92910.1111/jfb.14447This study reports the first records of cowsharks (Hexanchidae) in the Galápagos Islands, in particular Notorynchus cepedianus and Hexanchus griseus, observed between depths of 210 and 418?m on footage from free-falling autonomous deep-ocean cameras. These sightings provide new information on the habitat preferences and range distribution for N. cepedianus and the first records of H. griseus in Ecuadorian waters. The findings support the formulation of regional conservation strategies for these large apex predator species and highlight the limited biological knowledge of Galápagos' deep-water ecosystems.© 2020 The Fisheries Society of the British Isles.BuglassSalomeShttps://orcid.org/0000-0001-6329-3937Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador.NagyShannonSCharles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador.EbertDavidDPacific Shark Research Centre, Moss Landing Marine Laboratories, Moss Landing, California, USA.South African Institute for Aquatic Biodiversity, Grahamstown, South Africa.SepaPaulinaPCharles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador.TurchikAlanANational Geographic Society, Washington, District of Columbia, USA.BellKatherine L CKLCNational Geographic Society, Washington, District of Columbia, USA.MIT Media Lab, Cambridge, Massachusetts, USA.RiveraFernandoFGalápagos National Park Directorate, Puerto Ayora, Galapagos Islands, Ecuador.Instituto Nazca de Investigaciones Marinas, Salinas, Ecuador.GiddensJonathaJNational Geographic Society, Washington, District of Columbia, USA.engThis research was funded by the National Geographic Society, Lindblad Expeditions, MIT Media Lab, Ecoventura and Ms. Karen Lo.National Geographic Society, Lindblad Expeditions, MIT Media Lab, Ecoventura and Ms. Karen LoJournal Article20200730EnglandJ Fish Biol02140550022-1112IMAnimalsConservation of Natural ResourcesEcosystemEcuadorPacific OceanSharksclassificationphysiologyEcuadorGalápagos Islandscowsharkdeep-sea cameraseastern Pacific2020042720200621202006262020628602020121560202062860ppublish3259249510.1111/jfb.14447REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Suboccipital muscle of sharpnose sevengill shark Heptranchias perlo and its possible role in prey dissection.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kryukova NV, Kuznetsov AN<br><font color=gray><i>Journal of morphologyJ MorpholSuboccipital muscle of sharpnose sevengill shark Heptranchias perlo and its possible role in prey dissection.842-86110.1002/jmor.21142Skull and head muscles of Heptranchias perlo were studied. Its distinctive features include the suboccipital muscles, described for the first time, the absence of the palatoquadrate symphysis, a longitudinally extended mouth, and teeth unsuited for dissecting prey in typical method of modern sharks, which is cutting motions powered by head shaking from side to side. The palatoquadrate cartilages of H. perlo and closely related Hexanchidae articulate with the neurocranium via orbital and postorbital articulations, which together allow for lateral expansion of the jaws, but restrict retraction and protraction. We interpret these features as an adaptation to a different method of prey dissection, that is, ripping in a backward pull. It employs the specific postorbital articulation together with the suboccipital muscles as force-transmitting devices, and is powered by swimming muscles which produce a rearward thrust of the tail. During this type of dissection, the anterior part of the vertebral column should experience a tensile stress which explains the replacement of rigid vertebral bodies by a collagenous sheath around the notochord in H. perlo. The backward-ripping dissection could have been common among ancient Elasmobranchii based on the similarly developed postorbital articulation, a longitudinally extended mouth, and the absence of the palatoquadrate symphysis. A biomechanical comparison with the extinct Pucapampella indicates that ancient elasmobranchs could be also specialized in the backward-ripping prey dissection, but their mechanism was different from that inferred for H. perlo. We suggest that in the early evolution of sharks this mechanism was replaced by head-shaking dissection and then later was restored in H. perlo on a new morphological basis. A new position of the postorbital articulation below the vertebral axis is fraught with the braincase elevation when backward ripping the prey, and as a counter-mean, requires formation of suboccipital portions of the axial musculature unknown in other sharks. Homology and origin of these portions is considered.© 2020 Wiley Periodicals, Inc.KryukovaNadezhda VNV0000-0002-8167-0959Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.KuznetsovAlexander NAN0000-0002-9928-6955Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia.engJournal ArticleResearch Support, Non-U.S. Gov't20200617United StatesJ Morphol04061250022-2887IMAnimalsCalcification, PhysiologicMuscle, Skeletalanatomy & histologyNeck Musclesanatomy & histologyPredatory BehaviorphysiologySharksanatomy & histologySkullanatomy & histologydiagnostic imagingSpineanatomy & histologydiagnostic imagingPucapampellabiomechanicsjaw apparatusmuscle homologysharksvertebral column2019113020200408202004272020620602020121560202062060ppublish3255770710.1002/jmor.21142REFERENCES, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Unique osmoregulatory morphology in primitive sharks: an intermediate state between holocephalan and derived shark secretory morphology.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Larsen ME, Abel DC, Crane DP, Parker SL, Yancey PH, Keller BA, Grubbs DR<br><font color=gray><i>Journal of fish biologyJ Fish BiolUnique osmoregulatory morphology in primitive sharks: an intermediate state between holocephalan and derived shark secretory morphology.1331-134110.1111/jfb.14139Discovery of an unusual rectal gland in the Atlantic sixgill shark Hexanchus vitulus led us to examine the rectal glands of 31 species of sharks to study diversity in rectal-gland morphology. Twenty-four of 31 species of sharks had digitiform glands (mean width-length ratio?±?SD = 0.17?±?0.04) previously assumed to be characteristic of all elasmobranchs regardless of habitat depth or phylogenetic age. Rectal glands from the family Somniosidae were kidney bean-shaped (mean width: length?±?SD = 0.46?±?0.05); whereas those from families Echinorhinidae and Hexanchidae were lobulate (mean width: length?±?SD = 0.55?±?0.06). Rectal gland width: length were different among species with digitiform morphology and lobulate morphology (ANOVA; R2 = 0.9; df = 15, 386; 401, F = 219.24; P?<?0.001). Histological and morphological characteristics of the digitiform morphology from deep-sea sharks were similar to those from shallow-water sharks. Histology of lobulate rectal glands from hexanchids were characterised by tubule bundles separated by smooth muscle around a central lumen. Additionally, we examined plasma chemistry of four species of sharks with digitiform rectal glands and two species with lobulate rectal-gland morphology to see if there were differences between morphologies. Plasma chemistry analysis showed that urea and trimethylamine N-oxide (TMAO) followed the piezolyte hypothesis, with TMAO being highest and urea being lowest in deep-sea sharks. Among electrolytes, Na+ was highest in species with lobulate rectal glands. Hexanchids and echinorhinids both have lobulate rectal glands similar to those of holocephalans, despite the more than 400 million years separating these two groups. The morphological similarities between the lobulate rectal-gland anatomy of primitive sharks and the secretory morphology of holocephalans may represent an intermediate state between Holocephali and derived shark species.© 2019 The Fisheries Society of the British Isles.LarsenMatthew EMEhttps://orcid.org/0000-0002-5377-5219Department of Coastal and Marine Systems Science, Coastal Carolina University, Conway, South Carolina, USA.AbelDaniel CDCDepartment of Marine Science, Coastal Carolina University, Conway, South Carolina, USA.CraneDerek PDPDepartment of Biology, Coastal Carolina University, Conway, South Carolina, USA.ParkerScott LSLDepartment of Biology, Coastal Carolina University, Conway, South Carolina, USA.YanceyPaul HPHDepartment of Biology, Whitman College, Walla Walla, Washington, USA.KellerBryan ABACoastal and Marine Laboratory, Florida State University, St. Teresa, Florida, USA.GrubbsDean RDRCoastal and Marine Laboratory, Florida State University, St. Teresa, Florida, USA.engComparative StudyJournal Article20191007EnglandJ Fish Biol02140550022-1112IMAdaptation, PhysiologicalAnimalsBiological EvolutionEcosystemOsmoregulationPhylogenySeafoodSharksanatomy & histologyphysiologyAtlantic sixgill sharkHexanchidaeHexanchusdeep seahistologyrectal glandsecretory2019051520190914201910160202031760201910160ppublish3156673510.1111/jfb.14139REFERENCES, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Olfactory flow in the sturgeon is externally driven.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Garwood RJ, Behnsen J, Haysom HK, Hunt JN, Dalby LJ, Quilter SK, Maclaine JS, Cox JPL<br><font color=gray><i>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Microstructural morphology of dermal and oral denticles of the sharpnose sevengill shark Heptranchias perlo (Elasmobranchii: Hexanchidae), a deep-water species.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Rangel BS, Amorim AF, Kfoury JR, Rici REG<br><font color=gray><i>Microscopy research and technique, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>New record of a sharpnose sevengill shark Heptranchias perlo (Elasmobranchii, Hexanchidae) from the Balearic Sea, western Mediterranean Sea.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Guallart J, Morey G, Bartolí À<br><font color=gray><i>Journal of fish biology, 2019</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Engelbrecht A, Mörs T, Reguero MA, Kriwet J<br><font color=gray><i>Journal of South American earth sciences, 2017</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Functional analysis of the musculo-skeletal system of the gill apparatus in Heptranchias perlo (Chondrichthyes: Hexanchidae).</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Kryukova NV<br><font color=gray><i>Journal of morphology, 2017</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Hexanchidae+Gray%2C+1851&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Hexanchidae+Gray%2C+1851&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Hexanchidae+Gray%2C+1851&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Hexanchidae+Gray%2C+1851&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>