Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 90

Broader Terms:
   Tetrapoda 

More Specific:
   Aves (birds) 
   Mammalia (mammals) 
   Reptilia (reptiles) 
   Sauropsida 
   Synapsida 
   Unassigned 
 
 
Latest Articles on Amniota from uBioRSS


Aves
Simon Rerucha - BioLib

External Resources:

Common Names: amniotes



1.  Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians.LinkIT
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS
Biological reviews of the Cambridge Philosophical SocietyBiol Rev Camb Philos SocWhole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians.10.1111/brv.12822The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.© 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.GriggGordonGhttps://orcid.org/0000-0002-1542-5621School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.NowackJuliaJhttps://orcid.org/0000-0002-4512-5160School of Biological and Environmental Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, U.K.BicudoJosé Eduardo Pereira WilkenJEPWhttps://orcid.org/0000-0002-0434-9459School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.BalNaresh ChandraNChttps://orcid.org/0000-0002-2859-6315School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.WoodwardHolly NHNhttps://orcid.org/0000-0003-0413-0681Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, U.S.A.SeymourRoger SRShttps://orcid.org/0000-0002-3395-0059School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.engIndia DBT (BT/PR28935/MED/30/2035/2018)Naresh BalIndia DBT (BT/RLF/Re-entry/41/2014).Naresh BalSERB India (ECR/2016/001247)Naresh BalAustralian Research Council Discovery grant (DP 170104952)Roger SeymourOnline Open supported by consultancy accountUniversity of QueenslandJournal Article20211210EnglandBiol Rev Camb Philos Soc04145760006-3231IMUCP1amniote heartbrown adipose tissueendothermyevolutionnon-shivering thermogenesisplesiomorphytachymetabolismtemperature regulation2021112520201023202111292021121162320211212602021121260aheadofprint3489404010.1111/brv.12822REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>2.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Morphology of the temporal skull region in tetrapods: research history, functional explanations, and a new comprehensive classification scheme.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Abel P, Werneburg I<br><font color=gray><i>Biological reviews of the Cambridge Philosophical SocietyBiol Rev Camb Philos SocMorphology of the temporal skull region in tetrapods: research history, functional explanations, and a new comprehensive classification scheme.2229-225710.1111/brv.12751The morphology of the temporal region in the tetrapod skull traditionally has been a widely discussed feature of vertebrate anatomy. The evolution of different temporal openings in Amniota (mammals, birds, and reptiles), Lissamphibia (frogs, salamanders, and caecilians), and several extinct tetrapod groups has sparked debates on the phylogenetic, developmental, and functional background of this region in the tetrapod skull. This led most famously to the erection of different amniote taxa based on the number and position of temporal fenestrae in their skulls. However, most of these taxa are no longer recognised to represent natural groupings and the morphology of the temporal region is not necessarily an adequate trait for use in the reconstruction of amniote phylogenies. Yet, new fossil finds, most notably of parareptiles and stem-turtles, as well as modern embryological and biomechanical studies continue to provide new insights into the morphological diversity of the temporal region. Here, we introduce a novel comprehensive classification scheme for the various temporal morphotypes in all Tetrapoda that is independent of phylogeny and previous terminology and may facilitate morphological comparisons in future studies. We then review the history of research on the temporal region in the tetrapod skull. We document how, from the early 19th century with the first recognition of differences in the temporal region to the first proposals of phylogenetic relationships and their assessment over the centuries, the phylogenetic perspective on the temporal region has developed, and we highlight the controversies that still remain. We also compare the different functional and developmental drivers proposed for the observed morphological diversity and how the effects of internal and external factors on the structure of the tetrapod skull have been interpreted.© 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.AbelPascalP0000-0001-5544-6032Senckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) at Eberhard Karls Universität, Sigwartstraße 10, Tübingen, 72076, Germany.Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, Tübingen, 72074, Germany.WerneburgIngmarI0000-0003-1359-2036Senckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) at Eberhard Karls Universität, Sigwartstraße 10, Tübingen, 72076, Germany.Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12, Tübingen, 72074, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20210531EnglandBiol Rev Camb Philos Soc04145760006-3231IMAnimalsAnuraBiological EvolutionFossilsPhylogenyReptilesanatomy & histologySkullanatomy & histologyTemporal LobeAmniotaLissamphibiaTetrapodabiomechanicsfenestrationfunctional morphologymacroevolutionskull anatomy2021051220201218202105172021616020211026602021531639ppublish3405683310.1111/brv.12751REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>3.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title><i>Joermungandr bolti</i>, an exceptionally preserved 'microsaur' from the Mazon Creek Lagerstätte reveals patterns of integumentary evolution in Recumbirostra.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Mann A, Calthorpe AS, Maddin HC<br><font color=gray><i>Royal Society open science, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>4.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>The role of Gdf5 in the development of the zebrafish fin endoskeleton.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Waldmann L, Leyhr J, Zhang H, Allalou A, Öhman-Mägi C, Haitina T<br><font color=gray><i>Developmental dynamics : an official publication of the American Association of AnatomistsDev DynThe role of Gdf5 in the development of the zebrafish fin endoskeleton.10.1002/dvdy.399The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota.We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analyzed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish displayed changes in segmentation of the endoskeletal disc and, as a consequence, loss of posterior radials in the pectoral fins. Mutant fish also displayed disorganization and reduced length of endoskeletal elements in the median fins, while joints and mineralization seemed unaffected.Our study demonstrates the importance of Gdf5 in the development of the zebrafish pectoral and median fin endoskeleton and reveals that the severity of the effect increases from anterior to posterior elements. Our findings are consistent with phenotypes observed in the human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.© 2021 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.WaldmannLauraLhttps://orcid.org/0000-0002-3619-0796Department of Organismal Biology, Uppsala University, Uppsala, Sweden.LeyhrJakeJhttps://orcid.org/0000-0003-1815-7818Department of Organismal Biology, Uppsala University, Uppsala, Sweden.ZhangHanqingHDivision of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden.AllalouAminADivision of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden.Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden.Öhman-MägiCarolineChttps://orcid.org/0000-0003-2709-9541Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden.HaitinaTatjanaThttps://orcid.org/0000-0002-8754-5534Department of Organismal Biology, Uppsala University, Uppsala, Sweden.engScience for Life Laboratory621-2012-4673VetenskapsrådetJournal Article20210709United StatesDev Dyn92019271058-8388IMGdf5 mutantendoskeletonfin radialspectoral finzebrafish appendages2021062220210205202107082021710602021710602021791731aheadofprint3424244410.1002/dvdy.399REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>A remarkable group of thick-headed Triassic Period archosauromorphs with a wide, possibly Pangean distribution.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Nesbitt SJ, Stocker MR, Chatterjee S, Horner JR, Goodwin MB<br><font color=gray><i>Journal of anatomyJ AnatA remarkable group of thick-headed Triassic Period archosauromorphs with a wide, possibly Pangean distribution.184-20610.1111/joa.13414The radiation of archosauromorph reptiles in the Triassic Period produced an unprecedented collection of diverse and disparate forms with a mix of varied ecologies and body sizes. Some of these forms were completely unique to the Triassic, whereas others were converged on by later members of Archosauromorpha. One of the most striking examples of this is with Triopticus primus, the early dome-headed form later mimicked by pachycephalosaurid dinosaurs. Here we fully describe the cranial anatomy of Triopticus primus, but also recognize a second dome-headed form from a Upper Triassic deposit in present-day India. The new taxon, Kranosaura kuttyi gen. et sp. nov., is likely the sister taxon of Triopticus primus based on the presence of a greatly expanded skull roof with a deep dorsal opening (possibly the pineal opening) through the dome, similar cranial sculpturing, and a skull table that is expanded more posterior than the posterior extent of the basioccipital. However, the dome of Kranosaura kuttyi gen. et sp. nov. extends anterodorsally, unlike that of any other archosauromorph. Histological sections and computed tomographic reconstructions through the skull of Kranosaura kuttyi gen. et sp. nov. further reveal the uniqueness of the dome of these early archosauromorphs. Moreover, our integrated analysis further demonstrates that there are many ways to create a dome in Amniota. The presence of 'dome-headed' archosauromorphs at two localities on the western and eastern portions of Pangea suggests that these archosauromorphs were widespread and are likely part of more assemblages than currently recognized.© 2021 Anatomical Society.NesbittSterling JSJ0000-0002-7017-1652Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.StockerMichelle RMR0000-0002-6473-8691Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.ChatterjeeSankarSMuseum of Texas Tech University, Lubbock, TX, USA.HornerJohn RJRHonors Program, Chapman University, Orange, CA, USA.GoodwinMark BMBMuseum of Paleontology, University of California, Berkeley, CA, USA.engJournal Article20210303EnglandJ Anat01371620021-8782IMAnimal DistributionAnimalsDinosaursanatomy & histologyFossilsanatomy & histologySkullanatomy & histologyArchosauromorphaMaleri FormationPachycephalosauriaconvergencelate Triassic202102042020081120210205202307012021356020218196020213461ppublish3366026210.1111/joa.13414PMC8197959REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Muscle Enriched Lamin Interacting Protein (<i>Mlip</i>) Binds Chromatin and Is Required for Myoblast Differentiation.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Ahmady E, Blais A, Burgon PG<br><font color=gray><i>Cells, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Bone histology and microanatomy of Edaphosaurus and Dimetrodon (<b>Amniota</b>, Synapsida) vertebrae from the Lower Permian of Texas.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Agliano A, Sander PM, Wintrich T<br><font color=gray><i>Anatomical record (Hoboken, N.J. : 2007)Anat Rec (Hoboken)Bone histology and microanatomy of Edaphosaurus and Dimetrodon (Amniota, Synapsida) vertebrae from the Lower Permian of Texas.570-58310.1002/ar.24468Here we describe the histology and microanatomy of vertebral centra of the iconic pelycosaur-grade synapsids Edaphosaurus boanerges and Dimetrodon spp. Vertebrae from different axial positions and, in the case of Dimetrodon, from different ontogenetic stages were selected. For the histological description, we produced histological petrographic thin sections ground to a thickness of 50-80??m of the vertebrae in the sagittal and transversal cutting planes. After the preparation process, the thin sections were examined under transmitted and cross-polarized light in a polarized microscope. The analyzed vertebrae reveal similar bone tissues, where both taxa have cortical parallel-fibered bone (PFB). PFB and lamellar bone (LB) forms in the cancellous part. However, in juvenile Dimetrodon, woven-fibered bone (WFB) is also deposited and shows a high degree of vascularity. This suggests that Dimetrodon had slightly faster bone growth than Edaphosaurus, which is mainly made of PFB and LB and shows poorly developed vascular canals. In addition, one specimen of Dimetrodon displays the preservation of an ossified notochord, which can be assumed to be indicative of how the intervertebral tissues were developed. Historically, evidence of how the joint between Dimetrodon vertebral centra was built was lacking until this specimen appeared. If the notochord ran persistently through the vertebrae, it would have possibly increased the stiffness of the vertebral column and would have affected the limbs and locomotion. Furthermore, the organization of trabeculae and relative thickness of the vertebral cortex gives insights into how the animals were adapted to their habitat.© 2020 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.AglianoAminA0000-0003-2043-5645Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany.SanderP MartinPM0000-0003-4981-4307Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany.Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, California, USA.WintrichTanjaT0000-0002-1157-8604Section Paleontology, Institute of Geosciences, University of Bonn, Bonn, Germany.Institute of Anatomy, University of Bonn, Bonn, Germany.engJournal ArticleResearch Support, Non-U.S. Gov't20200621United StatesAnat Rec (Hoboken)1012927751932-8486IMAnimalsEcosystemFossilsLizardsanatomy & histologySpineanatomy & histologyTexasTexas Permian red bedsbasal synapsidsbone histologygrowth patternmicroanatomyvertebra2020012120200403202004172020636020214166020206360ppublish3248429410.1002/ar.24468REFERENCES, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Allometric relations of respiratory variables in <b>Amniota</b>: Effects of phylogeny, form, and function.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Souza RBB, Bonfim VMG, Rios VP, Klein W<br><font color=gray><i>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Insights into the evolution of IG genes in Amphibians and reptiles.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Olivieri DN, Mirete-Bachiller S, Gambón-Deza F<br><font color=gray><i>Developmental and comparative immunology, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>10.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Can We Reliably Calibrate Deep Nodes in the Tetrapod Tree? Case Studies in Deep Tetrapod Divergences.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Pardo JD, Lennie K, Anderson JS<br><font color=gray><i>Frontiers in genetics, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=2><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=3><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=4><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=5><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=6><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=7><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=8><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=9><img src=o_yellow.png border=0></a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=2><img src=rtal.png border=0></a></td></tr><td align=center></td><td align=center>1</td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=2>2</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=3>3</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=4>4</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=5>5</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=6>6</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=7>7</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=8>8</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=9>9</a></td><td align=center><a href=http://ubio.org/portal/index.php?search=Amniota&category=l&client=pubmed&startPage=2>»</a></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>