Pubmed    Pubmed Central
uBio Home | uBioRSS

WebSearchLiteratureMolecularImages

 uBio  Web Results 1 - 10 of about 852

Synonyms:
   Agave glomeruliflora (Chisos Mountain century plant) 
   Agave heteracantha glomeruliflora 
   Agave lecheguilla glomeruliflora 

Broader Terms:
   Agave (American agave) 
   Liliales 
 
 


External Resources:



1.  Determination of Cu, Ni, Mn and Zn in diesel oil samples using energy dispersive X-ray ?uorescence spectrometry after solid phase extraction using sisal fiber.LinkIT
Anjos SL, Almeida JS, Teixeira LSG, da Silva ACM, Santos AP, Queiroz AFS, Ferreira SLC, Mattedi S
Talanta, 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

2.  The sensory properties and metabolic impact of natural and synthetic sweeteners. 1554-1583 10.1111/1541-4337.12703 The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption. © 2021 Institute of Food Technologists®. Mora Margaux R MR https://orcid.org/0000-0003-2650-9158 Department of Food Science, Cornell University, Ithaca, New York. Dando Robin R https://orcid.org/0000-0001-8539-3971 Department of Food Science, Cornell University, Ithaca, New York. eng Journal Article 2021 02 13 United States Compr Rev Food Sci Food Saf 101305205 1541-4337 IM metabolism sensory sweeteners taste 2020 07 28 2020 11 12 2020 12 13 2021 2 14 6 0 2021 2 14 6 0 2021 2 13 5 55 ppublish 33580569 10.1111/1541-4337.12703 REFERENCES Food Insight. (2020). 2020 Food and Health Survey. Retrieved from https://foodinsight.org/2020-food-and-health-survey/ Abo Elnaga, N. I. E., Massoud, M. I., Yousef, M. I., & Mohamed, H. H. A. (2016). Effect of stevia sweetener consumption as non-caloric sweetening on body weight gain and biochemical-fs parameters in overweight female rats. Annals of Agricultural Sciences, 61, 155-163. Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., & Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J Toxicol Environ Health A, 71, 1415-1429. Alcaire, F., Antúnez, L., Vidal, L., Giménez, A., & Ares, G. (2017). Aroma-related cross-modal interactions for sugar reduction in milk desserts: Influence on consumer perception. Food Res Int, 97, 45-50. Allen, A. L., McGeary, J. E., & Hayes, J. E. (2013). Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31. Chemosensory Perception. Amo, K., Arai, H., Uebanso, T., Fukaya, M., Koganei, M., Sasaki, H., ? Takeda, E. (2011). Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr, 49, 1-7. Antenucci, R. G., & Hayes, J. E. (2015). Nonnutritive sweeteners are not supernormal stimuli. Int J Obes, 39, 254-259. Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., & Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55, 37-43. Anupama, D., Bhat, K. K., & Sapna, V. K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food Res Int, 36, 183-191. Araújo, J. R., Martel, F., & Keating, E. (2014). Exposure to non-nutritive sweeteners during pregnancy and lactation: Impact in programming of metabolic diseases in the progeny later in life. Reproductive Toxicology, 49, 196-201. Arrigoni, E., Brouns, F., & Amado, R. (2005). Human gut microbiota does not ferment erythritol. British Journal of Nutrition, 94, 643-646. Ayya, N., & Lawless, H. T. (1992). Quantitative and qualitative evaluation of high-intensity sweeteners and sweetener mixtures. Chem Senses, 17, 245-259. Ballongue, J., Schumann, C., & Quignon, P. (1997). Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology, 32, 41-44. Barclay, A., Sandall, P., & Shwide-Slavin, C. (2014). The ultimate guide to sugars and sweeteners: Discover the taste, use, nutrition, science, and lore of everything from agave nectar to xylitol. New York, NY: The Experiment. Basu, S., McKee, M., Galea, G., & Stuckler, D. (2013). Relationship of soft drink consumption to global overweight, obesity, and diabetes: A cross-national analysis of 75 countries. Am J Public Health, 103, 2071-2077. Beerens, K., Desmet, T., & Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. J Ind Microbiol Biotechnol, 39, 823-834. Behrens, M., Blank, K., & Meyerhof, W. (2017). Blends of non-caloric sweeteners saccharin and cyclamate show reduced off-taste due to TAS2R bitter receptor inhibition. Cell Chem Biol, 24, 1199-1204.e2. Belford, A. L., Lindsay, R. C., & Ridley, S. C. (1991). Contributions of selected flavor compounds to the sensory properties of Maple Syrup. Journal of Sensory Studies, 6, 101-118. Bernardo, W. M., Simões, R. S., Buzzini, R. F., Nunes, V. M., Glina, F. P. A., Bernardo, W. M., ? Glina, F. P. A. (2016). Adverse effects of the consumption of artificial sweeteners - Systematic review. Rev Assoc Médica Bras, 62, 120-122. Bernt, W. O., Borzelleca, J. F., Flamm, G., & Munro, I. C. (1996). Erythritol: A review of biological and toxicological studies. Regulatory Toxicology and Pharmacology, 24, S191-S197. Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front Physiol, 8, 487. Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol, 107, 530-539. Bieleski, R. L. (1982). Sugar alcohols. In F. A. Loewus & W. Tanner (Eds.), Plant carbohydrates I: Intracellular carbohydrates (pp. 158-192). Berlin, Germany: Springer. Bogdanov, S. (2016). Honey as nutrient and functional food: A review. Bee Product Science, 4(9), 464-470. Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: A review. J Am Coll Nutr, 27, 677-689. Bokulich, N. A., & Blaser, M. J. (2014). A bitter aftertaste: Unintended effects of artificial sweeteners on the gut microbiome. Cell Metab, 20, 701-703. Booth, D. A., Conner, M. T., & Marie, S. (1987). Sweetness and food selection: Measurement of sweeteners? effects on acceptance. In John Dobbing (Ed.), Sweetness (pp. 143-160). London, UK: Springer. Brandt, M. A., Skinner, E. Z., & Coleman, J. A. (1963). Texture profile method. J Food Sci, 28, 404-409. Brunstrom, J. M. (2007). Associative learning and the control of human dietary behavior. Appetite, 49, 268-271. Cadena, R. S., & Bolini, H. M. A. (2011). Time-intensity analysis and acceptance test for traditional and light vanilla ice cream. Food Res Int, 44, 677-683. Cadena, R. S., Cruz, A. G., Netto, R. R., Castro, W. F., Faria, J. d.A. F., & Bolini, H. M. A. (2013). Sensory profile and physicochemical characteristics of mango nectar sweetened with high intensity sweeteners throughout storage time. Food Research International, 54, 1670-1679. Campfield, L. A., Brandon, P., & Smith, F. J. (1985). On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: The role of glucose in meal initiation. Brain Res Bull, 14, 605-616. Cardoso, J. M. P., & Bolini, H. M. A. (2008). Descriptive profile of peach nectar sweetened with sucrose and different sweeteners. J Sens Stud, 23, 804-816. Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food Chem Toxicol, 107, 302-317. Castura, J. C., Antúnez, L., Giménez, A., & Ares, G. (2016). Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual Prefer, 47, 79-90. Chandrasekera, P. C., & Pippin, J. J. (2014). Of rodents and men: Species-specific glucose regulation and type 2 diabetes research. ALTEX - Altern Anim Exp, 31, 157-176. Chang, Y.-C., & Chuang, L.-M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American Journal of Translational Research, 2, 316-331. Chattopadhyay, S., Raychaudhuri, U., & Chakraborty, R. (2014). Artificial sweeteners - A review. J Food Sci Technol, 51, 611-621. Cheng, A. Y. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ, 172, 213-226. Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H., & Lu, K. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2), 367. Choo, E., & Dando, R. (2018). No detriment in taste response or expression in offspring of mice fed representative levels of sucrose or non-caloric sucralose while pregnant. Physiol Behav, 184, 39-45. Choo, E., Wong, L., Chau, P., Bushnell, J., & Dando, R. (2020). Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements. Scientific reports, 10(1), 1-11. Chu, C. A., Fujimoto, Y., Igawa, K., Grimsby, J., Grippo, J. F., Magnuson, M. A., ? Shiota, M. (2004). Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol-Gastrointest Liver Physiol, 286, G627-G634. Cohen, S. M. (1986). Saccharin: Past, present, and future. J Am Diet Assoc, 86, 929-931. Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E., & Weigle, D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 50, 1714-1719. Cvijanovic, N., Feinle-Bisset, C., Young, R. L., & Little, T. J. (2015). Oral and intestinal sweet and fat tasting: Impact of receptor polymorphisms and dietary modulation for metabolic disease. Nutr Rev, 73, 318-334. Dalenberg, J. R., Patel, B. P., Denis, R., Veldhuizen, M. G., Nakamura, Y., Vinke, P. C., ? Small, D. M. (2020). Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metabolism, 31, 493-502.e7. Daly, K., Darby, A. C., & Shirazi-Beechey, S. P. (2016). Low calorie sweeteners and gut microbiota. Physiol Behav, 164, 494-500. Donner, T. W., Wilber, J. F., & Ostrowski, D. (1999). D-tagatose, a novel hexose: Acute effects on carbohydrate tolerance in subjects with and without type 2 diabetes. Diabetes Obes Metab, 1, 285-291. DuBois, G. E., & Prakash, I. (2012). Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu Rev Food Sci Technol, 3, 353-380. DuBois, G. E., & Stephenson, R. A. (1985). Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogs with improved organoleptic properties. Journal of Medicinal Chemistry, 28, 93-98. Edwards, C. H., Rossi, M., Corpe, C. P., Butterworth, P. J., & Ellis, P. R. (2016). The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends Food Sci Technol, 56, 158-166. Ensor, M., Williams, J., Smith, R., Banfield, A., & Lodder, R. A. (2014). Effects of three low-doses of d-tagatose on glycemic control over six months in subjects with mild type 2 diabetes mellitus under control with diet and exercise. J Endocrinol Diabetes Obes, 2, 1057. Erejuwa, O. O., Omotayo, E. O., Gurtu, S., Sulaiman, S. A., Wahab, M. S. A., Sirajudeen, K. N. S., & Salleh, M. S. M. (2010). Hypoglycemic and antioxidant effects of honey supplementation in streptozotocininduced diabetic rats. International Journal for Vitamin and Nutrition Research, 80, 74-82. Erejuwa, O. O., Sulaiman, S. A., & Wahab, M. S. A. (2012). Honey - A novel antidiabetic agent. Int J Biol Sci, 8, 913-934. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., ? Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066-9071. Farup, P. G., Lydersen, S., & Valeur, J. (2019). Are Nonnutritive Sweeteners Obesogenic? Associations between Diet, Faecal Microbiota, and Short-Chain Fatty Acids in Morbidly Obese Subjects. Journal of Obesity. FDA. (2014). Food additives permitted for direct addition to food for human consumption; advantame. Retrieved from https://www.federalregister.gov/documents/2014/05/21/2014-11584/food-additives-permitted-for-direct-addition-to-food-for-human-consumption-advantame Ferrazzano, G. F., Cantile, T., Alcidi, B., Coda, M., Ingenito, A., Zarrelli, A., ? Pollio, A. (2016). Is Stevia rebaudiana Bertoni a non cariogenic sweetener? A review. Molecules, 21, 38. Foletto, K. C., Melo Batista, B. A., Neves, A. M., de Matos Feijó, F., Ballard, C. R., Marques Ribeiro, M. F., & Bertoluci, M. C. (2016). Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats. Appetite, 96, 604-610. Forde, C. G. (2018). Measuring satiation and satiety. In G. Ares & P. Varela (Eds.), Methods in consumer research (Vol. 2, pp. 151-182). Cambridge, UK: Woodhead Publishing. Fowler, S. P., Williams, K., Resendez, R. G., Hunt, K. J., Hazuda, H. P., & Stern, M. P. (2008). Fueling the Obesity Epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity, 16, 1894-1900. Fowler, S. P., Williams, K., Resendez, R. G., Hunt, K. J., Hazuda, H. P., & Stern, M. P. (2012). Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity, 16, 1894-1900. Frayn, K. N., & Kingman, S. M. (1995). Dietary sugars and lipid metabolism in humans. Am J Clin Nutr, 62, 250S-261S. Friedrich, M. J. (2017). Global obesity epidemic worsening. JAMA, 318, 603-603. Fujimaru, T., Park, J.-H., & Lim, J. (2012). Sensory characteristics and relative sweetness of tagatose and other sweeteners. J Food Sci, 77, S323-S328. Galán-Soldevilla, H., Ruiz-Pérez-Cacho, M. P., Serrano Jiménez, S., Jodral Villarejo, M., & Bentabol Manzanares, A. (2005). Development of a preliminary sensory lexicon for floral honey. Food Quality and Preference, 16, 71-77. Gardana, C., Simonetti, P., Canzi, E., Zanchi, R., & Pietta, P. (2003). Metabolism of stevioside and rebaudioside a from stevia rebaudiana extracts by human microflora. Journal of Agricultural and Food Chemistry, 51, 6618-6622. George, V., Arora, S., Wadhwa, B. K., & Singh, A. K. (2010). Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates. Journal of Food Science and Technology, 47, 408-413. Gheldof, N., Wang, X.-H., & Engeseth, N. J. (2002). Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem, 50, 5870-5877. Gibbs, B. F., Alli, I., & Mulligan, C. (1996). Sweet and taste-modifying proteins: A review. Nutrition Research, 16, 1619-1630. Gibson, S., Gunn, P., Wittekind, A., & Cottrell, R. (2013). The effects of sucrose on metabolic health: A systematic review of human intervention studies in healthy adults. Crit Rev Food Sci Nutr, 53, 591-614. Glória, M. B. A. (2003). SWEETENERS | Others. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (2nd ed., pp. 5695-5702). Oxford, UK: Academic Press. Goraya, R. K., & Bajwa, U. (2016). The sweetness technology of sugar substituted low calorie beverages. Food & Nutrition Journal. Gostner, A., Blaut, M., Schäffer, V., Kozianowski, G., Theis, S., Klingeberg, M., ? Scheppach, W. (2006). Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr, 95, 40-50. Grembecka, M. (2015). Sugar alcohols-Their role in the modern world of sweeteners: A review. Eur Food Res Technol, 241, 1-14. Greenbaum, A., & Aryana, K. (2013). Effect of honey a natural sweetener with several medicinal properties on the attributes of a frozen dessert containing the probiotic Lactobacillus acidophilus. Open Journal of Medical Microbiology, 3, 95-99. Grenby, T. H. (1991). Intense sweeteners for the food industry: An overview. Trends Food Sci Technol, 2, 2-6. Grotz, V. L., Henry, R. R., McGill, J. B., Prince, M. J., Shamoon, H., Trout, J. R., & Pi-Sunyer, F. X. (2003). Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. Journal of the American Dietetic Association, 103, 1607-1612. Grotz, V. L., Pi-Sunyer, X., Porte, D., Roberts, A., & Trout, J. R. (2017). A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regulatory Toxicology and Pharmacology, 88, 22-33. Guerrero-Wyss, M., SD, Agüero, & Dávila, L. A. (2018). D-Tagatose is a promising sweetener to control glycaemia: A new functional food. BioMed Res Int, 2018, 8718053. Guri, A. J., Hontecillas, R., Si, H., Liu, D., & Bassaganya-Riera, J. (2007). Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical Nutrition, 26, 107-116. Gwak, M.-J., Chung, S.-J., Kim, Y. J., & Lim, C. S. (2012). Relative sweetness and sensory characteristics of bulk and intense sweeteners. Food Sci Biotechnol, 21, 889-894. Hall, K. D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K. Y., ? Zhou, M. (2019). Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell metabolism, 30(1), 67-77. Han, Y., Han, H. J., Kim, A.-H., Choi, J.-Y., Cho, S.-J., Park, Y. B., ? Choi, M.-S. (2016). D-Allulose supplementation normalized the body weight and fat-pad mass in diet-induced obese mice via the regulation of lipid metabolism under isocaloric fed condition. Mol Nutr Food Res, 60, 1695-1706. Han, Y., Kwon, E.-Y., Yu, M. K., Lee, S. J., Kim, H.-J., Kim, S.-B., ? Choi, M.-S. (2018). A preliminary study for evaluating the dose-dependent effect of D-allulose for fat mass reduction in adult humans: A randomized, double-blind, placebo-controlled trial. Nutrients, 10, 160. Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. Q Rev Biol, 90, 251-268. Harwood, W. S., & Drake, M. (2019). Understanding implicit and explicit consumer desires for protein bars, powders, and beverages. J Sens Stud, 34, e12493. Hayashi, N., Yamada, T., Takamine, S., Iida, T., Okuma, K., & Tokuda, M. (2014). Weight reducing effect and safety evaluation of rare sugar syrup by a randomized double-blind, parallel-group study in human. J Funct Foods, 11, 152-159. Hellfritsch, C., Brockhoff, A., Stahler, F., Meyerhof, W., & Hofmann, T. (2012). Human Psychometric and Taste Receptor Responses to Steviol Glycosides. Journal of Agricultural and Food Chemistry, 60, 6782-6793. Hendrick, M. E., Mitchell, H. L., & Murray, P. R. (1996). Features of alitame? as a new high intensity sweetener. In T. H. Grenby (Ed.), Advances in sweeteners (pp. 226-239). Boston, MA: Springer US. Hicks, R. M., Chowaniec, J., & Wakefield, J. St. J. (1973). Saccharin in the balance. Br Med J, 3, 404. Higgins, K. A., & Mattes, R. D. (2019). A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr, 109, 1288-1301. Hilton, J. (2017). Growth patterns and emerging opportunities in nutraceutical and functional food categories: Market overview. In D. Bagchi & S. Nair (Eds.), Developing new functional food and neutraceutical products (pp. 1-28). London, UK: Academic/Elsevier. Hossain, A., Yamaguchi, F., Matsuo, T., Tsukamoto, I., Toyoda, Y., Ogawa, M., ? Tokuda, M. (2015). Rare sugar d-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Ther, 155, 49-59. Hossain, M. A., Kitagaki, S., Nakano, D., Nishiyama, A., Funamoto, Y., Matsunaga, T., ? Tokuda, M. (2011). Rare sugar d-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochem Biophys Res Commun, 405, 7-12. Iab, T. S., & Dando, R. (2020). Satiety, taste and the cephalic phase: A crossover designed pilot study into taste and glucose response. Foods, 9(11), E1578. Inglett, G. E. (1976). A history of sweeteners-natural and synthetic. Journal of Toxicology and Environmental Health, 2, 207-214. Ishikawa, M., Miyashita, M., Kawashima, Y., Nakamura, T., Saitou, N., & Modderman, J. (1996). Effects of Oral Administration of Erythritol on Patients with Diabetes. Regulatory Toxicology and Pharmacology, 24, S303-S308. Jain, T., & Grover, K. (2015). Sweeteners in human nutrition. International Journal of Health Sciences. Jang, H.-J., Kokrashvili, Z., Theodorakis, M. J., Carlson, O. D., Kim, B. J., Zhou, J., ? Egan, J. (2007). Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proceedings of the National Academy of Sciences, 104, 15069-15074. Jiao, Y., & Wang, Y. (2018). The effects of sweeteners and sweetness enhancers on obesity and diabetes: A review. J Food Bioact, 4, 107-116. John, B. A., Wood, S. G., & Hawkins, D. R. (2000). The pharmacokinetics and metabolism of sucralose in the mouse. Food and Chemical Toxicology, 38, 107-110. Joseph, J. A., Akkermans, S., Nimmegeers, P., & Van Impe, J. F. M. (2019). Bioproduction of the recombinant sweet protein thaumatin: Current state of the art and perspectives. Front Microbiol, 10, 695. Just, T., Pau, H. W., Engel, U., & Hummel, T. (2008). Cephalic phase insulin release in healthy humans after taste stimulation? Appetite, 51, 622-627. Kajiwara, S., Gandhi, H., & Ustunol, Z. (2002). Effect of honey on the growth of and acid production by human intestinal Bifidobacterium spp.: an in vitro comparison with commercial oligosaccharides and inulin. Journal of Food Protection, 65, 214-218. Karalexi, M. A., Mitrogiorgou, M., Georgantzi, G. G., Papaevangelou, V., & Fessatou, S. (2018). Non-nutritive sweeteners and metabolic health outcomes in children: A systematic review and meta-analysis. The Journal of Pediatrics, 197, 128-133.e2. Kassim, M., Achoui, M., Mustafa, M. R., Mohd, M. A., & Yusoff, K. M. (2010). Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutrition Research, 30, 650-659. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474, 327-336. Kim, M.-J., Yoo, S.-H., Jung, S., Park, M. K., & Hong, J. H. (2015). Relative sweetness, sweetness quality, and temporal profile of xylooligosaccharides and luo han guo (Siraitia grosvenorii) extract. Food Science and Biotechnology, 24, 965-973. Kim, P., Yoon, S.-H., Roh, H.-J., & Choi, J.-H. (2001). High Production of D-Tagatose, a Potential Sugar Substitute, Using Immobilized LArabinose Isomerase. Biotechnology Progress, 17, 208-210. Kimura, S., Zhang, G.-X., Nishiyama, A., Nagai, Y., Nakagawa, T., Miyanaka, H., ? Abe, Y. (2005). D-allose, an all-cis aldo-hexose, suppresses development of salt-induced hypertension in Dahl rats. J Hypertens, 23, 1887-1894. Kinghora, A. D., Soejarto, D. D., & Inglett, G. E. (1986). Sweetening agents of plant origin. Critical Reviews in Plant Sciences, 4, 79-120. Knight, I. (1994). The development and applications of sucralose, a new high-intensity sweetener. Can J Physiol Pharmacol, 72, 435-439. Koyama, E., Kitazawa, K., Ohori, Y., Izawa, O., Kakegawa, K., Fujino, A., & Ui, M. (2003). In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food and Chemical Toxicology, 41, 359-374. Laffitte, A., Neiers, F., & Briand, L. (2014). Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care, 17, 379-385. Laviada-Molina, H., Molina-Segui, F., Pérez-Gaxiola, G., Cuello-García, C., Arjona-Villicaña, R., Espinosa-Marrón, A., & Martinez-Portilla, R. J. (2020). Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obesity Reviews, 21, e13020. Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: Principles and practices. New York, NY: Springer-Verlag. Lawless, H. T., & Skinner, E. Z. (1979). The duration and perceived intensity of sucrose taste. Percept Psychophys, 25, 180-184. Lawrence, J. F. (2003). Cyclamates. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (2nd ed., pp. 1712-1714). Oxford, UK: Academic Press. Le Bot, Y., & Gouy, P. A. (1995). Polyols from starch. In M. W. Kearsley & S. Z. Dziedzic (Eds.), Handbook of starch hydrolysis products and their derivatives (pp. 155-177). Boston, MA: Springer US. Lê, K.-A., Robin, F., & Roger, O. (2016). Sugar replacers: From technological challenges to consequences on health. Curr Opin Clin Nutr Metab Care, 19, 310-315. Lee, A. A., & Owyang, C. (2019). Sugars, sweet taste receptors, and brain responses. In V. B. Patel (Ed.), Molecular nutrition: Carbohydrates (pp. 265-283). Cambridge, MA: Academic Press. Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem, 132, 1121-1132. Lenhart, A., & Chey, W. D. (2017). A systematic review of the effects of polyols on gastrointestinal health and irritable bowel syndrome. Adv Nutr, 8, 587-596. Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. J Med Food, 5, 23-36. Li, L., & Seeram, N. P. (2010). Maple syrup phytochemicals include lignans, Coumarins, a Stilbene, and Other Previously Unreported Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 58, 11673-11679. Lindley, M. G., Birch, G. G., & Khan, R. (1976). Sweetness of sucrose and xylitol. Structural considerations. J Sci Food Agric, 27, 140-144. Liu, H., Qi, X., Yu, K., Lu, A., Lin, K., Zhu, J., Zhang, M., & Sun, Z. (2019). AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food & Function, 10, 151-162. Livesey, G. (2003). Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutrition Research Reviews, 16, 163-191. Low, Y. Q., Lacy, K., & Keast, R. (2014). The role of sweet taste in satiation and satiety. Nutrients, 6, 3431-3450. Ludwig, D. S. (2002). The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, 287, 2414-2423. Lutsey, P. L., Steffen, L. M., & Stevens, J. (2008). Dietary intake and the development of the metabolic syndrome: The atherosclerosis risk in communities study. Circulation, 117, 754-761. Mace, O. J., Affleck, J., Patel, N., & Kellett, G. L. (2007). Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. The Journal of Physiology, 582, 379-392. Magnuson, B. A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutr Rev, 74, 670-689. Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., ? Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37, 629-727. Mahalak, K. K., Firrman, J., Tomasula, P. M., Nuñez A., Lee, J. J., Bittinger, K., Rinaldi, W., & Liu, L. S. (2019). Impact of Steviol Glycosides and Erythritol on the Human and Cebus apella Gut Microbiome. Journal of Agricultural and Food Chemistry. Malaisse, W. J., Vanonderbergen, A., Louchami, K., Jijakli, H., & Malaisse-Lagae, F. (1998). Effects of Artificial Sweeteners on Insulin Release and Cationic Fluxes in Rat Pancreatic Islets. Cellular Signalling, 10, 727-733. Malik, V. S., & Hu, F. B. (2012). Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Curr Diab Rep, 12, 195-203. Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem, 277, 1-4. Market Data Forecast. (2019). Latin America Thaumatin Market by type and size | Industry report 2019-2024. Retrieved from http://www.marketdataforecast.com/ Martínez-Cervera, S., Salvador, A., & Sanz, T. (2014). Comparison of different polyols as total sucrose replacers in muffins: Thermal, rheological, texture and acceptability properties. Food Hydrocoll, 35, 1-8. Mattes, R. D., & Popkin, B. M. (2009). Nonnutritive sweetener consumption in humans: Effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr, 89, 1-14. Mejia, E., & Pearlman, M. (2019). Natural alternative sweeteners and diabetes management. Curr Diab Rep, 19, 142. Mellado-Mojica, E., Seeram, N. P., & Lopez, M. G. (2016). Comparative analysis of maple syrups and natural sweeteners: Carbohydrates composition and classification (differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. Journal of Food Composition and Analysis, 52, 1-8. Mennella, J. A., Bobowski, N. K., & Reed, D. R. (2016). The development of sweet taste: From biology to hedonics. Rev Endocr Metab Disord, 17, 171-178. Miele, N. A., Cabisidan, E. K., Galiñanes Plaza, A., Masi, P., Cavella, S., & Di Monaco, R. (2017). Carbohydrate sweetener reduction in beverages through the use of high potency sweeteners: Trends and new perspectives from a sensory point of view. Trends Food Sci Technol, 64, 87-93. Miller, P. E., & Perez, V. (2014). Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr, 100, 765-777. Mitchell, H. (2008). Sweeteners and sugar alternatives in food technology. Hoboken, NJ: John Wiley & Sons. Mooradian, A., Smith, M., & Tokuda, M. (2017). The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN, 18, 1-8. Moriano, M. E., & Alamprese, C. (2017). Honey, trehalose and erythritol as sucrose-alternative sweeteners for artisanal ice cream. A pilot study. LWT, 75, 329-334. Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and metabolic effects of low-calorie and non-calorie sweeteners. Front. Endocrinol, 11, 444. Moskowitz, H. R. (1970). Sweetness and intensity of artificial sweeteners. Percept Psychophys, 8, 40-42. Mu, W., Zhang, W., Feng, Y., Jiang, B., & Zhou, L. (2012). Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol, 94, 1461-1467. Mushtaq, Z., Rehman, S-, Zahoor, T., & Jamil, A. (2010). Impact of xylitol replacement on physicochemical, sensory and microbial quality of cookies. Pak J Nutr, 9(6), 605-610. Nagai, N., Ito, Y., & Taga, A. (2013). Comparison of the Enhancement of Plasma Glucose Levels in Type 2 Diabetes Otsuka Long-Evans Tokushima Fatty Rats by Oral Administration of Sucrose or Maple Syrup. Journal of Oleo Science, 62, 737-743. Nagata, Y., Kanasaki, A., Tamaru, S., & Tanaka, K. (2015). D-Psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem, 63, 3168-3176. Nagata, Y., Mizuta, N., Kanasaki, A., & Tanaka, K. (2018). Rare sugars, D-allulose, D-tagatose and D-sorbose, differently modulate lipid metabolism in rats. J Sci Food Agric, 98, 2020-2026. Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev V. O., Lohse M. J., Shigemura N., Ninomiya Y., & Kojima I. (2009). Sweet Taste Receptor Expressed in Pancreatic ?À-Cells Activates the Calcium and Cyclic AMP Signaling systems and stimulates insulin secretion. Plos One, 4, E5106. Nettleton, J. E., Klancic, T., Schick, A., Choo, A. C., Shearer, J., Borgland, S. L., Chleilat, F., Mayengbam, S., & Reimer, R. A. (2019). Low-Dose Stevia (Rebaudioside A) Consumption perturbs gut microbiota and the mesolimbic dopamine reward system. Nutrients, 11, 1248. Nettleton, J. A., Lutsey, P. L., Wang, Y., Lima, J. A., Michos, E. D., & Jacobs, D. R. (2009). Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care, 32, 688-694. Nettleton, J. E., Cho, N. A., Klancic, T., Nicolucci, A. C., Shearer, J., Borgland, S. L., ? Reimer, R. A. (2020). Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut, 69, 1807-1817. Nofre, C., & Tinti, J.-M. (2000). Neotame: Discovery, properties, utility. Food Chem, 69, 245-257. O'Brien-Nabors, L. (2011). Alternative sweeteners (4th ed.). Boca Raton, FL: CRC Press. Ochiai, M., Onishi, K., Yamada, T., Iida, T., & Matsuo, T. (2014). D-Psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet. Int J Food Sci Nutr, 65, 245-250. O'Donnell, C. (2014). Formulating for a sweet perception with natural sweeteners. Retrieved from https://www.foodprocessing.com/articles/2014/formulating-for-a-sweet-perception-with-natural-sweeteners/ O'Donnell, K., & Kearsley, M. W. (Eds.). (2012). Sweeteners and sugar alternatives in food technology. Chichester, UK: Wiley-Blackwell. Oliveira, D., Antúnez, L., Giménez, A., Castura, J. C., Deliza, R., & Ares, G. (2015). Sugar reduction in probiotic chocolate-flavored milk: Impact on dynamic sensory profile and liking. Food Res Int, 75, 148-156. Oliveira, D., Reis, F., Deliza, R., Rosenthal, A., Giménez, A., & Ares, G. (2016). Difference thresholds for added sugar in chocolate-flavoured milk: Recommendations for gradual sugar reduction. Food Res Int, 89, 448-453. Olsson, K., Carlsen, S., Semmler, A., Simón, E., Mikkelsen, M. D., & Møller, B. L. (2016). Microbial production of next-generation stevia sweeteners. Microb Cell Factories, 15, 207. Oser, B. L., Carson, S., Cox, G. E., Vogin, E. E., & Sternberg, S. S. (1975). The monitoring of chemical contaminants in food. Toxicology, 4, 315-330. Ovejero-López, I., Bro, R., & Bredie, W. L. P. (2005). Univariate and multivariate modelling of flavour release in chewing gum using time-intensity: A comparison of data analytical methods. Food Qual Prefer, 16, 327-343. Overduin, J., Collet, T.-H., Medic, N., Henning, E., Keogh, J. M., Forsyth, F., ? van der Klaauw, A. A. (2016). Failure of sucrose replacement with the non-nutritive sweetener erythritol to alter GLP-1 or PYY release or test meal size in lean or obese people. Appetite, 107, 596-603. Parker, M. N., Lopetcharat, K., & Drake, M. A. (2018). Consumer acceptance of natural sweeteners in protein beverages. Journal of Dairy Science, 101, 8875-8889. Pawar, R. S., Krynitsky, A. J., & Rader, J. I. (2013). Sweeteners from plants-with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry, 405, 4397-4407. Perkins, T. D., & van den Berg, A. K. (2009). Maple syrup-Production, composition, chemistry, and sensory characteristics. In S. L. Taylor (Ed.), Advances in food and nutrition research (pp. 101-143). Cambridge, MA: Academic Press. Persano Oddo, L., Piazza, M. G., Sabatini, A. G., & Accorti, M. (1995). Characterization of unifloral honeys. Apidologie, 26, 453-465. Pfeffer, M., Ziesenitz, S. C., & Siebert, G. (1985). Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria. Zeitschrift Fur Ernahrungswissenschaft, 24, 231-235. Piana, M. L., Persano Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Declerck, C. G. (2004). Sensory analysis applied to honey: state of the art. Apidologie, 35, S26-S37. Plaza-Diaz, J., Pastor-Villaescusa, B., Rueda-Robles, A., Abadia-Molina, F., & Ruiz-Ojeda, F. J. (2020). Plausible Biological Interactions of Low- and Non-Calorie Sweeteners with the Intestinal Microbiota: An Update of Recent Studies. Nutrients. Police, S. B., Harris, J. C., Lodder, R. A., & Cassis, L. A. (2009). Effect of diets containing sucrose vs. D-tagatose in hypercholesterolemic mice. Obesity, 17, 269-275. Popkin, B. M., & Hawkes, C. (2016). Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endocrinol, 4, 174-186. Portmann, M.-O., & Kilcast, D. (1996). Psychophysical characterization of new sweeteners of commercial importance for the EC food industry. Food Chem, 56, 291-302. Prakash, I., Markosyan, A., & Bunders, C. (2014). Development of next generation stevia sweetener: Rebaudioside M. Foods, 3, 162-175. Prival, M. J. (2003). CANCER | Carcinogens in the Food Chain. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition (Second Edition). Oxford: Academic Press, pp 799-804. Purkayastha, S., Pugh, G., Jr., Lynch, B., Roberts, A., Kwok, D., & Tarka, S. M., Jr. (2014). In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions: Comparison with rebaudioside A. Regul Toxicol Pharmacol, 68, 259-268. Raka, F., Farr, S., Kelly, J., Stoianov, A., & Adeli, K. (2019). Metabolic control via nutrient-sensing mechanisms: Role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol-Endocrinol Metab, 317, E559-E572. Rakha, M. K., Nabil, Z. I., & Hussein, A. A. (2008). Cardioactive and vasoactive effects of natural wild honey against cardiac malperformance induced by hyperadrenergic activity. Journal of Medicinal Food, 11, 91-98. Ranney, R. E., Oppermann, J. A., Muldoon, E., & McMahon, F. G. (1976). Comparative metabolism of aspartame in experimental animals and humans. Journal of Toxicology and Environmental Health, 2, 441-451. Reed, D. R., & Knaapila, A. (2010). Genetics of taste and smell: Poisons and pleasures. In C. Bouchard (Ed.), Progress in molecular biology and translational science (pp. 213-240). Cambridge, MA: Academic Press. Reis, F., Alcaire, F., Deliza, R., & Ares, G. (2017). The role of information on consumer sensory, hedonic and wellbeing perception of sugar-reduced products: Case study with orange/pomegranate juice. Food Qual Prefer, 62, 227-236. Ren, X., Zhou, L., Terwilliger, R., Newton, S., & De Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci, 3:12. Renwick, A. G. (1986). The metabolism of intense sweeteners. Xenobiotica, 16, 1057-1071. Renwick, A. G., & Molinary, S. V. (2010). Sweet-taste receptors, low-energy sweeteners, glucose absorption and insulin release. Br J Nutr, 104, 1415-1420. Research and Markets. (2017). $3.5 Billion polyols (sugar alcohols) market - A global overview 2017-2022: Focus on sorbitol, xylitol, mannitol, maltitol, erythritol, isomalt and lactitol. Retrieved from http://www.globenewswire.com/news-release/2017/02/14/916876/0/en/3-5-Billion-Polyols-Sugar-Alcohols-Market-A-Global-Overview-2017-2022-Focus-on-Orbitol-Xylitol-Mannitol-Maltitol-Erythritol-Isomalt-and-Lactitol.html Reyes, M. M., Castura, J. C., & Hayes, J. E. (2017). Characterizing dynamic sensory properties of nutritive and nonnutritive sweeteners with temporal check-all-that-apply. J Sens Stud, 32, e12270. Roberts, A., Renwick, A. G., Sims, J., & Snodin, D. J. (2000). Sucralose metabolism and pharmacokinetics in man. Food and Chemical Toxicology, 38, 31-41. Roca, C., Alves, V. D., Freitas, F., & Reis, M. A. M. (2015). Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiology. Rogers, P. J., Hogenkamp, P. S., de Graaf, C., Higgs, S., Lluch, A., Ness, A. R., ? Mela, D. J. (2016). Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes, 40, 381-394. Roper, S. D., & Chaudhari, N. (2017). Taste buds: Cells, signals and synapses. Nat Rev Neurosci, 18, 485-497. Ruanpeng, D., Thongprayoon, C., Cheungpasitporn, W., & Harindhanavudhi, T. (2017). Sugar and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. QJM, 110, 513-520. Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of sweeteners on the gut microbiota: A review of experimental studies and clinical trials. Adv Nutr, 10, S31-S48. von Rymon Lipinski, G.-W. (1985). The new intense sweetener acesulfame K. Food Chem, 16, 259-269. Salminen, S., Salminen, E., Koivistoinen, P., Bridges, J., & Marks, V. (1985). Gut microflora interactions with xylitol in the mouse, rat and man. Food and Chemical Toxicology, 23, 985-990. Samanta, A., Burden, A. C., & Jones, G. R. (1985). Plasma glucose responses to glucose, sucrose, and honey in patients with diabetes mellitus: an analysis of glycaemic and peak incremental indices. Diabetic Medicine, 2, 371-373. Sanger, G. J., & Lee, K. (2008). Hormones of the gut.brain axis as targets for the treatment of upper gastrointestinal disorders. Nature Reviews Drug Discovery, 7, 241-254. Santos, P. S., Caria, C. R., Gotardo, E. M., Ribeiro, M., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells? barrier function in vitro. Food Funct, 9, 3815-3822. Sato, A., Kawano, H., Notsu, T., Ohta, M., Nakakuki, M., Mizuguchi, K., ? Ogawa, Y. (2010). Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: Importance of hepatic lipogenesis. Diabetes, 59, 2495-2504. Schiffman, S. S., DA, Reilly, & Clark, T. B. (1979). Qualitative differences among sweeteners. Physiol Behav, 23, 1-9. Schiffman, S. S., Crofton, V. A., & Beeker, T. G. (1985). Sensory evaluation of soft drinks with various sweeteners. Physiol Behav, 34, 369-377. Schiffman, S. S., Booth, B. J., Losee, M. L., Pecore, S. D., & Warwick, Z. S. (1995). Bitterness of sweeteners as a function of concentration. Brain Res Bull, 36, 505-513. Schiffman, S. S., & Rother, K. I. (2013). Sucralose, A Synthetic Organochlorine Sweetener: Overview Of Biological Issues. Journal of Toxicology and Environmental Health, Part B, 16, 399-451. Schiffman, S. S., Sattely-Miller, E. A., & Bishay, I. E. (2008). Sensory properties of neotame: Comparison with other sweeteners. In K. Deepthi, D. K. Weerasinghe, & G. E. DuBois (Eds.), Sweetness and sweeteners (pp. 511-529). Washington, DC: American Chemical Society. Shankar, P., Ahuja, S., & Sriram, K. (2013). Non-nutritive sweeteners: Review and update. Nutrition, 29, 1293-1299. Shintani, T., Yamada, T., Hayashi, N., Iida, T., Nagata, Y., Ozaki, N., & Toyoda, Y. (2017). Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and insulin sensitivity partly via hepatic glucokinase translocation in Wistar rats. J Agric Food Chem, 65, 2888-2894. Smeets, P. A., de Graaf, C., Stafleu, A., van Osch, M. J., & van der Grond, J. (2005). Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr, 82, 1011-1016. Smeets, P. A., Erkner, A., & de Graaf, C. (2010). Cephalic phase responses and appetite. Nutr Rev, 68, 643-655. Spillane, W. J. (2006). Optimising sweet taste in foods. Cambridge, UK: Woodhead Publishing. Stanhope, K. L. (2016). Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci, 53, 52-67. Stellman, S. D., & Garfinkel, L. (1988). Patterns of artificial sweetener use and weight change in an American Cancer Society prospective study. Appetite, 11, 85-91. Stone, H., & Sidel, J. L. (2004). Introduction to sensory evaluation. In H. Stone & J. L. Sidel (Eds.), Sensory evaluation practices (3rd ed., pp. 1-19). San Diego, CA: Academic Press. St-Pierre, P., Pilon, G., Dumais, V., Dion, C., Dubois, M.-J., Dubé, P., ? Marette, A. (2014). Comparative analysis of maple syrup to other natural sweeteners and evaluation of their metabolic responses in healthy rats. J Funct Foods, 11, 460-471. Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., ? Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nat Lond, 514, 181-186. Suzuki, Y. A., Murata, Y., Inui, H., Sugiura, M., & Nakano, Y. (2005). Triterpene glycosides of Siraitia grosvenorii inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J Agric Food Chem, 53, 2941-2946. ?wia?der, K., Waszkiewicz-Robak, B., ?widerski, F., & Kostyra, E. (2009). Sensory properties of some synthetic high-intensity sweeteners in water solutions. J Sci Food Agric, 89, 2030-2038. Swithers, S. E. (2013). Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology & Metabolism, 24, 431-441. Sylvetsky, A. C., & Rother, K. I. (2016). Trends in the consumption of low-calorie sweeteners. Physiol Behav, 164, 446-450. Sylvetsky, A. C., & Rother, K. I. (2018). Nonnutritive sweeteners in weight management and chronic disease: A review. Obesity, 26, 635-640. Takayama, S., Renwick, A. G., Johansson, S. L., et al (2000) Long-Term Toxicity and Carcinogenicity Study of Cyclamate in Nonhuman Primates. Toxicological Sciences 53:33-39. Tamura, M., Hoshi, C., & Hori, S. (2013). Xylitol affects the intestinal microbiota and metabolism of Daidzein in Adult Male Mice. International Journal of Molecular Sciences, 14, 23993-24007. Tan, V. W. K., Wee, M. S. M., Tomic, O., & Forde, C. G. (2019). Temporal sweetness and side tastes profiles of 16 sweeteners using temporal check-all-that-apply (TCATA). Food Res Int Ott Ont, 121, 39-47. Tan, V. W. K., Wee, M. S. M., Tomic, O., & Forde, C. G. (2020). Rate-All-That-Apply (RATA) comparison of taste profiles for different sweeteners in black tea, chocolate milk, and natural yogurt. J Food Sci, 85, 486-492. Tey, S. L., Salleh, N. B., Henry, C. J., & Forde, C. G. (2017). Effects of non-nutritive (artificial vs natural) sweeteners on 24-h glucose profiles. European Journal of Clinical Nutrition, 71, 1129-1132. Tey, S. L., Salleh, N. B., Henry, J., & Forde, C. G. (2017). Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. International Journal of Obesity, 41, 450-457. Teff, K. L., & Engelman, K. (1996). Oral sensory stimulation improves glucose tolerance in humans: Effects on insulin, C-peptide, and glucagon. Am J Physiol-Regul Integr Comp Physiol, 270, R1371-R1379. Ter Horst, K. W., & Serlie, M. J. (2017). Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients, 9, 981. Ter Horst, K. W., Schene, M. R., Holman, R., Romijn, J. A., & Serlie, M. J. (2016). Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: A systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr, 104, 1562-1576. Thanarajah, S. E., Backes, H., DiFeliceantonio, A. G., Albus, K., Cremer, A. L., Hanssen, R., ? Tittgemeyer, M. (2019). Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab, 29, 695-706.e4. Thériault, M., Caillet, S., Kermasha, S., & Lacroix, M. (2006). Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chemistry, 98, 490-501. Thomson, P., Santibanez, R., Aguirre, C., Galgani, J. E., & Garrido, D. (2019). Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition, 122, 856-862. Toews, I., Lohner, S., Gaudry, D. K. D. E., Sommer, H., & Meerpohl, J. J. (2019). Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ, 364. Toews, I., Lohner, S., Gaudry, D. K. d., Sommer, H., & Meerpohl, J. J. (2019). Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. Bmj (Clinical Research Ed.), 364. Uebanso, T., Kano, S., Yoshimoto, A., Naito, C., Shimohata, T., Mawatari, K., & Takahashi, A. (2017). Effects of consuming xylitol on gut microbiota and lipid metabolism in mice. Nutrients, 9(7), 756. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2015). Xylitol: A review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr, 55, 1514-1528. Vamanu, E., Pelinescu, D., Gatea, F., & Sarbu, I. (2019). Altered in vitro metabolomic response of the human microbiota to sweeteners. Genes, 10, 535. Varzakas, T., Labropoulos, A., & Anestis, S. (2012). Sweeteners: Nutritional aspects, applications, and production technology. Boca Raton, FL: CRC Press. Ventura, E. E., Davis, J. N., & Goran, M. I. (2011). Sugar content of popular sweetened beverages based on objective laboratory analysis: Focus on fructose content. Obesity, 19, 868-874. Viskaal-van Dongen, M., de Graaf, C., Siebelink, E., & Kok, F. J. (2009). Hidden fat facilitates passive overconsumption. J Nutr, 139, 394-399. Wagoner, T. B., McCain, H. R., Foegeding, E. A., & Drake, M. A. (2018). Food texture and sweetener type modify sweetness perception in whey protein-based model foods. J Sens Stud, 33, e12333. Wan, C., Yuan, T., Li, L., Kandhi, V., Cech, N. B., Xie, M., & Seeram, N. P. (2012). Maplexins, new ?¿-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorganic & Medicinal Chemistry Letters, 22, 597-600. Wang, Q.-P., Browman, D., Herzog, H., & Neely, G. G. (2018). Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. Plos One. Wee, M., Tan, V., & Forde, C. (2018). A comparison of psychophysical dose-response behaviour across 16 sweeteners. Nutrients, 10, 1632. Weingarten, H. P., & Martin, G. M. (1989). Mechanisms of conditioned meal initiation. Physiol Behav, 45, 735-740. Wexler, H. M. (2007). Bacteroides: The good, the bad, and the nitty-gritty. Clin Microbiol Rev, 20, 593-621. Whitehouse, C. R., Boullata, J., & McCauley, L. A. (2008). The potential toxicity of artificial sweeteners. AAOHN J, 56, 251-259. Willems, J. L., & Low, N. H. (2012). Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis. Journal of Agricultural and Food Chemistry, 60, 8745-8754. Withers, C., Barnagaud, C., Mehring, P., Ferris, S., & Thomson, D. M. H. (2016). Adapting and enhancing sequential profiling to understand the effects of successive ingestion, using the sensory characteristics of high intensity sweeteners as a case study. Food Qual Prefer, 47, 139-147. Xi, D., Bhattacharjee, J., Salazar-Gonzalez, R-M., Park, S., Jang, A., Warren, M., ? Kohli, R. (2020). Rebaudioside affords hepatoprotection ameliorating sugar sweetened beverage- induced nonalcoholic steatohepatitis. Sci Rep, 10, 6689. Yamada, T., Hayashi, N., Iida, T., Takamine, S., Okuma, K., & Matsuo, T. (2014). Dietary D-Sorbose decreases serum insulin levels in growing sprague-dawley rats. Journal of Nutritional Science and Vitaminology, 60, 297-299. Yang, Q. (2010). Gain weight by ?going diet?? Artificial sweeteners and the neurobiology of sugar cravings. Yale J Biol Med, 83, 101-108. Young, R. L. (2011). Sensing via intestinal sweet taste pathways. Front Neurosci, 5, 23. Zhang, G.-H., Chen, M.-L., Liu, S.-S., Zhan, Y.-H., Quan, Y., Qin, Y.-M., & Deng, S.-P. (2011). Effects of mother's dietary exposure to acesulfame-K in pregnancy or lactation on the adult offspring's sweet preference. Chem Senses, 36, 763-770. Zhang, H., Yang, H., Zhang, M., Wang, Y., Wang, J., Yau, L., ? Hu, P. (2012). Identification of flavonol and triterpene glycosides in Luo-Han-Guo extract using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Food Compos Anal, 25, 142-148. Zhang, W., Yu, S., Zhang, T., Jiang, B., & Mu, W. (2016). Recent advances in d-allulose: Physiological functionalities, applications, and biological production. Trends Food Sci Technol, 54, 127-137. Zhang, W., Zhang, T., Jiang, B., & Mu, W. (2017). Enzymatic approaches to rare sugar production. Biotechnology Advances, 35, 267-274. Zorn, S., Alcaire, F., Vidal, L., Giménez, A., & Ares, G. (2014). Application of multiple-sip temporal dominance of sensations to the evaluation of sweeteners. Food Qual Prefer, 36, 135-143. 26677512 NBK333439 University of Washington, Seattle Seattle (WA) GeneReviews® 1993 1993 2021 Adam Margaret P MP Ardinger Holly H HH Pagon Roberta A RA Wallace Stephanie E SE Bean Lora JH LJH Mirzaa Ghayda G Amemiya Anne A Internet Hereditary Fructose IntoleranceLinkIT
Mora MR, Dando R, , Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, , Gaughan S, Ayres L, Baker PR
Comprehensive reviews in food science and food safety Compr Rev Food Sci Food Saf The sensory properties and metabolic impact of natural and synthetic sweeteners. 1554-1583 10.1111/1541-4337.12703 The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption. © 2021 Institute of Food Technologists®. Mora Margaux R MR https://orcid.org/0000-0003-2650-9158 Department of Food Science, Cornell University, Ithaca, New York. Dando Robin R https://orcid.org/0000-0001-8539-3971 Department of Food Science, Cornell University, Ithaca, New York. eng Journal Article 2021 02 13 United States Compr Rev Food Sci Food Saf 101305205 1541-4337 IM metabolism sensory sweeteners taste 2020 07 28 2020 11 12 2020 12 13 2021 2 14 6 0 2021 2 14 6 0 2021 2 13 5 55 ppublish 33580569 10.1111/1541-4337.12703 REFERENCES, 2021</Year> <Month>Mar</Month> </PubDate> </JournalIssue> <Title>Comprehensive reviews in food science and food safety Compr Rev Food Sci Food Saf The sensory properties and metabolic impact of natural and synthetic sweeteners. 1554-1583 10.1111/1541-4337.12703 The global rise in obesity, type II diabetes, and other metabolic disorders in recent years has been attributed in part to the overconsumption of added sugars. Sugar reduction strategies often rely on synthetic and naturally occurring sweetening compounds to achieve their goals, with popular synthetic sweeteners including saccharin, cyclamate, acesulfame potassium, aspartame, sucralose, neotame, alitame, and advantame. Natural sweeteners can be further partitioned into nutritive, including polyols, rare sugars, honey, maple syrup, and agave, and nonnutritive, which include steviol glycosides and rebaudiosides, luo han guo (monk fruit), and thaumatin. We choose the foods we consume largely on their sensory properties, an area in which these sugar substitutes often fall short. Here, we discuss the most popular synthetic and natural sweeteners, with the goal of providing an understanding of differences in the sensory profiles of these sweeteners versus sucrose, that they are designed to replace, essential for the effectiveness of sugar reduction strategies. In addition, we break down the influence of these sweeteners on metabolism, and present results from a large survey of consumers' opinions on these sweeteners. Consumer interest in clean label foods has driven a move toward natural sweeteners; however, neither natural nor synthetic sweeteners are metabolically inert. Identifying sugar replacements that not only closely imitate the sensory profile of sucrose but also exert advantageous effects on body weight and metabolism is critical in successfully the ultimate goals of reducing added sugar in the average consumer's diet. With so many options for sucrose replacement available, consumer opinion and cost, which vary widely with suagr replacements, will also play a vital role in which sweeteners are successful in widespread adoption. © 2021 Institute of Food Technologists®. Mora Margaux R MR https://orcid.org/0000-0003-2650-9158 Department of Food Science, Cornell University, Ithaca, New York. Dando Robin R https://orcid.org/0000-0001-8539-3971 Department of Food Science, Cornell University, Ithaca, New York. eng Journal Article 2021 02 13 United States Compr Rev Food Sci Food Saf 101305205 1541-4337 IM metabolism sensory sweeteners taste 2020 07 28 2020 11 12 2020 12 13 2021 2 14 6 0 2021 2 14 6 0 2021 2 13 5 55 ppublish 33580569 10.1111/1541-4337.12703 REFERENCES Food Insight. (2020). 2020 Food and Health Survey. Retrieved from https://foodinsight.org/2020-food-and-health-survey/ Abo Elnaga, N. I. E., Massoud, M. I., Yousef, M. I., & Mohamed, H. H. A. (2016). Effect of stevia sweetener consumption as non-caloric sweetening on body weight gain and biochemical-fs parameters in overweight female rats. Annals of Agricultural Sciences, 61, 155-163. Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., & Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J Toxicol Environ Health A, 71, 1415-1429. Alcaire, F., Antúnez, L., Vidal, L., Giménez, A., & Ares, G. (2017). Aroma-related cross-modal interactions for sugar reduction in milk desserts: Influence on consumer perception. Food Res Int, 97, 45-50. Allen, A. L., McGeary, J. E., & Hayes, J. E. (2013). Rebaudioside A and Rebaudioside D bitterness do not covary with Acesulfame K bitterness or polymorphisms in TAS2R9 and TAS2R31. Chemosensory Perception. Amo, K., Arai, H., Uebanso, T., Fukaya, M., Koganei, M., Sasaki, H., ? Takeda, E. (2011). Effects of xylitol on metabolic parameters and visceral fat accumulation. J Clin Biochem Nutr, 49, 1-7. Antenucci, R. G., & Hayes, J. E. (2015). Nonnutritive sweeteners are not supernormal stimuli. Int J Obes, 39, 254-259. Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., & Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55, 37-43. Anupama, D., Bhat, K. K., & Sapna, V. K. (2003). Sensory and physico-chemical properties of commercial samples of honey. Food Res Int, 36, 183-191. Araújo, J. R., Martel, F., & Keating, E. (2014). Exposure to non-nutritive sweeteners during pregnancy and lactation: Impact in programming of metabolic diseases in the progeny later in life. Reproductive Toxicology, 49, 196-201. Arrigoni, E., Brouns, F., & Amado, R. (2005). Human gut microbiota does not ferment erythritol. British Journal of Nutrition, 94, 643-646. Ayya, N., & Lawless, H. T. (1992). Quantitative and qualitative evaluation of high-intensity sweeteners and sweetener mixtures. Chem Senses, 17, 245-259. Ballongue, J., Schumann, C., & Quignon, P. (1997). Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology, 32, 41-44. Barclay, A., Sandall, P., & Shwide-Slavin, C. (2014). The ultimate guide to sugars and sweeteners: Discover the taste, use, nutrition, science, and lore of everything from agave nectar to xylitol. New York, NY: The Experiment. Basu, S., McKee, M., Galea, G., & Stuckler, D. (2013). Relationship of soft drink consumption to global overweight, obesity, and diabetes: A cross-national analysis of 75 countries. Am J Public Health, 103, 2071-2077. Beerens, K., Desmet, T., & Soetaert, W. (2012). Enzymes for the biocatalytic production of rare sugars. J Ind Microbiol Biotechnol, 39, 823-834. Behrens, M., Blank, K., & Meyerhof, W. (2017). Blends of non-caloric sweeteners saccharin and cyclamate show reduced off-taste due to TAS2R bitter receptor inhibition. Cell Chem Biol, 24, 1199-1204.e2. Belford, A. L., Lindsay, R. C., & Ridley, S. C. (1991). Contributions of selected flavor compounds to the sensory properties of Maple Syrup. Journal of Sensory Studies, 6, 101-118. Bernardo, W. M., Simões, R. S., Buzzini, R. F., Nunes, V. M., Glina, F. P. A., Bernardo, W. M., ? Glina, F. P. A. (2016). Adverse effects of the consumption of artificial sweeteners - Systematic review. Rev Assoc Médica Bras, 62, 120-122. Bernt, W. O., Borzelleca, J. F., Flamm, G., & Munro, I. C. (1996). Erythritol: A review of biological and toxicological studies. Regulatory Toxicology and Pharmacology, 24, S191-S197. Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., & Lu, K. (2017). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front Physiol, 8, 487. Bian, X., Tu, P., Chi, L., Gao, B., Ru, H., & Lu, K. (2017). Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem Toxicol, 107, 530-539. Bieleski, R. L. (1982). Sugar alcohols. In F. A. Loewus & W. Tanner (Eds.), Plant carbohydrates I: Intracellular carbohydrates (pp. 158-192). Berlin, Germany: Springer. Bogdanov, S. (2016). Honey as nutrient and functional food: A review. Bee Product Science, 4(9), 464-470. Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: A review. J Am Coll Nutr, 27, 677-689. Bokulich, N. A., & Blaser, M. J. (2014). A bitter aftertaste: Unintended effects of artificial sweeteners on the gut microbiome. Cell Metab, 20, 701-703. Booth, D. A., Conner, M. T., & Marie, S. (1987). Sweetness and food selection: Measurement of sweeteners? effects on acceptance. In John Dobbing (Ed.), Sweetness (pp. 143-160). London, UK: Springer. Brandt, M. A., Skinner, E. Z., & Coleman, J. A. (1963). Texture profile method. J Food Sci, 28, 404-409. Brunstrom, J. M. (2007). Associative learning and the control of human dietary behavior. Appetite, 49, 268-271. Cadena, R. S., & Bolini, H. M. A. (2011). Time-intensity analysis and acceptance test for traditional and light vanilla ice cream. Food Res Int, 44, 677-683. Cadena, R. S., Cruz, A. G., Netto, R. R., Castro, W. F., Faria, J. d.A. F., & Bolini, H. M. A. (2013). Sensory profile and physicochemical characteristics of mango nectar sweetened with high intensity sweeteners throughout storage time. Food Research International, 54, 1670-1679. Campfield, L. A., Brandon, P., & Smith, F. J. (1985). On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: The role of glucose in meal initiation. Brain Res Bull, 14, 605-616. Cardoso, J. M. P., & Bolini, H. M. A. (2008). Descriptive profile of peach nectar sweetened with sucrose and different sweeteners. J Sens Stud, 23, 804-816. Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food Chem Toxicol, 107, 302-317. Castura, J. C., Antúnez, L., Giménez, A., & Ares, G. (2016). Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Qual Prefer, 47, 79-90. Chandrasekera, P. C., & Pippin, J. J. (2014). Of rodents and men: Species-specific glucose regulation and type 2 diabetes research. ALTEX - Altern Anim Exp, 31, 157-176. Chang, Y.-C., & Chuang, L.-M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American Journal of Translational Research, 2, 316-331. Chattopadhyay, S., Raychaudhuri, U., & Chakraborty, R. (2014). Artificial sweeteners - A review. J Food Sci Technol, 51, 611-621. Cheng, A. Y. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ, 172, 213-226. Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H., & Lu, K. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2), 367. Choo, E., & Dando, R. (2018). No detriment in taste response or expression in offspring of mice fed representative levels of sucrose or non-caloric sucralose while pregnant. Physiol Behav, 184, 39-45. Choo, E., Wong, L., Chau, P., Bushnell, J., & Dando, R. (2020). Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements. Scientific reports, 10(1), 1-11. Chu, C. A., Fujimoto, Y., Igawa, K., Grimsby, J., Grippo, J. F., Magnuson, M. A., ? Shiota, M. (2004). Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol-Gastrointest Liver Physiol, 286, G627-G634. Cohen, S. M. (1986). Saccharin: Past, present, and future. J Am Diet Assoc, 86, 929-931. Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E., & Weigle, D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 50, 1714-1719. Cvijanovic, N., Feinle-Bisset, C., Young, R. L., & Little, T. J. (2015). Oral and intestinal sweet and fat tasting: Impact of receptor polymorphisms and dietary modulation for metabolic disease. Nutr Rev, 73, 318-334. Dalenberg, J. R., Patel, B. P., Denis, R., Veldhuizen, M. G., Nakamura, Y., Vinke, P. C., ? Small, D. M. (2020). Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metabolism, 31, 493-502.e7. Daly, K., Darby, A. C., & Shirazi-Beechey, S. P. (2016). Low calorie sweeteners and gut microbiota. Physiol Behav, 164, 494-500. Donner, T. W., Wilber, J. F., & Ostrowski, D. (1999). D-tagatose, a novel hexose: Acute effects on carbohydrate tolerance in subjects with and without type 2 diabetes. Diabetes Obes Metab, 1, 285-291. DuBois, G. E., & Prakash, I. (2012). Non-caloric sweeteners, sweetness modulators, and sweetener enhancers. Annu Rev Food Sci Technol, 3, 353-380. DuBois, G. E., & Stephenson, R. A. (1985). Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogs with improved organoleptic properties. Journal of Medicinal Chemistry, 28, 93-98. Edwards, C. H., Rossi, M., Corpe, C. P., Butterworth, P. J., & Ellis, P. R. (2016). The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends Food Sci Technol, 56, 158-166. Ensor, M., Williams, J., Smith, R., Banfield, A., & Lodder, R. A. (2014). Effects of three low-doses of d-tagatose on glycemic control over six months in subjects with mild type 2 diabetes mellitus under control with diet and exercise. J Endocrinol Diabetes Obes, 2, 1057. Erejuwa, O. O., Omotayo, E. O., Gurtu, S., Sulaiman, S. A., Wahab, M. S. A., Sirajudeen, K. N. S., & Salleh, M. S. M. (2010). Hypoglycemic and antioxidant effects of honey supplementation in streptozotocininduced diabetic rats. International Journal for Vitamin and Nutrition Research, 80, 74-82. Erejuwa, O. O., Sulaiman, S. A., & Wahab, M. S. A. (2012). Honey - A novel antidiabetic agent. Int J Biol Sci, 8, 913-934. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., ? Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066-9071. Farup, P. G., Lydersen, S., & Valeur, J. (2019). Are Nonnutritive Sweeteners Obesogenic? Associations between Diet, Faecal Microbiota, and Short-Chain Fatty Acids in Morbidly Obese Subjects. Journal of Obesity. FDA. (2014). Food additives permitted for direct addition to food for human consumption; advantame. Retrieved from https://www.federalregister.gov/documents/2014/05/21/2014-11584/food-additives-permitted-for-direct-addition-to-food-for-human-consumption-advantame Ferrazzano, G. F., Cantile, T., Alcidi, B., Coda, M., Ingenito, A., Zarrelli, A., ? Pollio, A. (2016). Is Stevia rebaudiana Bertoni a non cariogenic sweetener? A review. Molecules, 21, 38. Foletto, K. C., Melo Batista, B. A., Neves, A. M., de Matos Feijó, F., Ballard, C. R., Marques Ribeiro, M. F., & Bertoluci, M. C. (2016). Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats. Appetite, 96, 604-610. Forde, C. G. (2018). Measuring satiation and satiety. In G. Ares & P. Varela (Eds.), Methods in consumer research (Vol. 2, pp. 151-182). Cambridge, UK: Woodhead Publishing. Fowler, S. P., Williams, K., Resendez, R. G., Hunt, K. J., Hazuda, H. P., & Stern, M. P. (2008). Fueling the Obesity Epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity, 16, 1894-1900. Fowler, S. P., Williams, K., Resendez, R. G., Hunt, K. J., Hazuda, H. P., & Stern, M. P. (2012). Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity, 16, 1894-1900. Frayn, K. N., & Kingman, S. M. (1995). Dietary sugars and lipid metabolism in humans. Am J Clin Nutr, 62, 250S-261S. Friedrich, M. J. (2017). Global obesity epidemic worsening. JAMA, 318, 603-603. Fujimaru, T., Park, J.-H., & Lim, J. (2012). Sensory characteristics and relative sweetness of tagatose and other sweeteners. J Food Sci, 77, S323-S328. Galán-Soldevilla, H., Ruiz-Pérez-Cacho, M. P., Serrano Jiménez, S., Jodral Villarejo, M., & Bentabol Manzanares, A. (2005). Development of a preliminary sensory lexicon for floral honey. Food Quality and Preference, 16, 71-77. Gardana, C., Simonetti, P., Canzi, E., Zanchi, R., & Pietta, P. (2003). Metabolism of stevioside and rebaudioside a from stevia rebaudiana extracts by human microflora. Journal of Agricultural and Food Chemistry, 51, 6618-6622. George, V., Arora, S., Wadhwa, B. K., & Singh, A. K. (2010). Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates. Journal of Food Science and Technology, 47, 408-413. Gheldof, N., Wang, X.-H., & Engeseth, N. J. (2002). Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem, 50, 5870-5877. Gibbs, B. F., Alli, I., & Mulligan, C. (1996). Sweet and taste-modifying proteins: A review. Nutrition Research, 16, 1619-1630. Gibson, S., Gunn, P., Wittekind, A., & Cottrell, R. (2013). The effects of sucrose on metabolic health: A systematic review of human intervention studies in healthy adults. Crit Rev Food Sci Nutr, 53, 591-614. Glória, M. B. A. (2003). SWEETENERS | Others. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (2nd ed., pp. 5695-5702). Oxford, UK: Academic Press. Goraya, R. K., & Bajwa, U. (2016). The sweetness technology of sugar substituted low calorie beverages. Food & Nutrition Journal. Gostner, A., Blaut, M., Schäffer, V., Kozianowski, G., Theis, S., Klingeberg, M., ? Scheppach, W. (2006). Effect of isomalt consumption on faecal microflora and colonic metabolism in healthy volunteers. Br J Nutr, 95, 40-50. Grembecka, M. (2015). Sugar alcohols-Their role in the modern world of sweeteners: A review. Eur Food Res Technol, 241, 1-14. Greenbaum, A., & Aryana, K. (2013). Effect of honey a natural sweetener with several medicinal properties on the attributes of a frozen dessert containing the probiotic Lactobacillus acidophilus. Open Journal of Medical Microbiology, 3, 95-99. Grenby, T. H. (1991). Intense sweeteners for the food industry: An overview. Trends Food Sci Technol, 2, 2-6. Grotz, V. L., Henry, R. R., McGill, J. B., Prince, M. J., Shamoon, H., Trout, J. R., & Pi-Sunyer, F. X. (2003). Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. Journal of the American Dietetic Association, 103, 1607-1612. Grotz, V. L., Pi-Sunyer, X., Porte, D., Roberts, A., & Trout, J. R. (2017). A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regulatory Toxicology and Pharmacology, 88, 22-33. Guerrero-Wyss, M., SD, Agüero, & Dávila, L. A. (2018). D-Tagatose is a promising sweetener to control glycaemia: A new functional food. BioMed Res Int, 2018, 8718053. Guri, A. J., Hontecillas, R., Si, H., Liu, D., & Bassaganya-Riera, J. (2007). Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical Nutrition, 26, 107-116. Gwak, M.-J., Chung, S.-J., Kim, Y. J., & Lim, C. S. (2012). Relative sweetness and sensory characteristics of bulk and intense sweeteners. Food Sci Biotechnol, 21, 889-894. Hall, K. D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K. Y., ? Zhou, M. (2019). Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell metabolism, 30(1), 67-77. Han, Y., Han, H. J., Kim, A.-H., Choi, J.-Y., Cho, S.-J., Park, Y. B., ? Choi, M.-S. (2016). D-Allulose supplementation normalized the body weight and fat-pad mass in diet-induced obese mice via the regulation of lipid metabolism under isocaloric fed condition. Mol Nutr Food Res, 60, 1695-1706. Han, Y., Kwon, E.-Y., Yu, M. K., Lee, S. J., Kim, H.-J., Kim, S.-B., ? Choi, M.-S. (2018). A preliminary study for evaluating the dose-dependent effect of D-allulose for fat mass reduction in adult humans: A randomized, double-blind, placebo-controlled trial. Nutrients, 10, 160. Hardy, K., Brand-Miller, J., Brown, K. D., Thomas, M. G., & Copeland, L. (2015). The importance of dietary carbohydrate in human evolution. Q Rev Biol, 90, 251-268. Harwood, W. S., & Drake, M. (2019). Understanding implicit and explicit consumer desires for protein bars, powders, and beverages. J Sens Stud, 34, e12493. Hayashi, N., Yamada, T., Takamine, S., Iida, T., Okuma, K., & Tokuda, M. (2014). Weight reducing effect and safety evaluation of rare sugar syrup by a randomized double-blind, parallel-group study in human. J Funct Foods, 11, 152-159. Hellfritsch, C., Brockhoff, A., Stahler, F., Meyerhof, W., & Hofmann, T. (2012). Human Psychometric and Taste Receptor Responses to Steviol Glycosides. Journal of Agricultural and Food Chemistry, 60, 6782-6793. Hendrick, M. E., Mitchell, H. L., & Murray, P. R. (1996). Features of alitame? as a new high intensity sweetener. In T. H. Grenby (Ed.), Advances in sweeteners (pp. 226-239). Boston, MA: Springer US. Hicks, R. M., Chowaniec, J., & Wakefield, J. St. J. (1973). Saccharin in the balance. Br Med J, 3, 404. Higgins, K. A., & Mattes, R. D. (2019). A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr, 109, 1288-1301. Hilton, J. (2017). Growth patterns and emerging opportunities in nutraceutical and functional food categories: Market overview. In D. Bagchi & S. Nair (Eds.), Developing new functional food and neutraceutical products (pp. 1-28). London, UK: Academic/Elsevier. Hossain, A., Yamaguchi, F., Matsuo, T., Tsukamoto, I., Toyoda, Y., Ogawa, M., ? Tokuda, M. (2015). Rare sugar d-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Ther, 155, 49-59. Hossain, M. A., Kitagaki, S., Nakano, D., Nishiyama, A., Funamoto, Y., Matsunaga, T., ? Tokuda, M. (2011). Rare sugar d-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochem Biophys Res Commun, 405, 7-12. Iab, T. S., & Dando, R. (2020). Satiety, taste and the cephalic phase: A crossover designed pilot study into taste and glucose response. Foods, 9(11), E1578. Inglett, G. E. (1976). A history of sweeteners-natural and synthetic. Journal of Toxicology and Environmental Health, 2, 207-214. Ishikawa, M., Miyashita, M., Kawashima, Y., Nakamura, T., Saitou, N., & Modderman, J. (1996). Effects of Oral Administration of Erythritol on Patients with Diabetes. Regulatory Toxicology and Pharmacology, 24, S303-S308. Jain, T., & Grover, K. (2015). Sweeteners in human nutrition. International Journal of Health Sciences. Jang, H.-J., Kokrashvili, Z., Theodorakis, M. J., Carlson, O. D., Kim, B. J., Zhou, J., ? Egan, J. (2007). Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proceedings of the National Academy of Sciences, 104, 15069-15074. Jiao, Y., & Wang, Y. (2018). The effects of sweeteners and sweetness enhancers on obesity and diabetes: A review. J Food Bioact, 4, 107-116. John, B. A., Wood, S. G., & Hawkins, D. R. (2000). The pharmacokinetics and metabolism of sucralose in the mouse. Food and Chemical Toxicology, 38, 107-110. Joseph, J. A., Akkermans, S., Nimmegeers, P., & Van Impe, J. F. M. (2019). Bioproduction of the recombinant sweet protein thaumatin: Current state of the art and perspectives. Front Microbiol, 10, 695. Just, T., Pau, H. W., Engel, U., & Hummel, T. (2008). Cephalic phase insulin release in healthy humans after taste stimulation? Appetite, 51, 622-627. Kajiwara, S., Gandhi, H., & Ustunol, Z. (2002). Effect of honey on the growth of and acid production by human intestinal Bifidobacterium spp.: an in vitro comparison with commercial oligosaccharides and inulin. Journal of Food Protection, 65, 214-218. Karalexi, M. A., Mitrogiorgou, M., Georgantzi, G. G., Papaevangelou, V., & Fessatou, S. (2018). Non-nutritive sweeteners and metabolic health outcomes in children: A systematic review and meta-analysis. The Journal of Pediatrics, 197, 128-133.e2. Kassim, M., Achoui, M., Mustafa, M. R., Mohd, M. A., & Yusoff, K. M. (2010). Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutrition Research, 30, 650-659. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474, 327-336. Kim, M.-J., Yoo, S.-H., Jung, S., Park, M. K., & Hong, J. H. (2015). Relative sweetness, sweetness quality, and temporal profile of xylooligosaccharides and luo han guo (Siraitia grosvenorii) extract. Food Science and Biotechnology, 24, 965-973. Kim, P., Yoon, S.-H., Roh, H.-J., & Choi, J.-H. (2001). High Production of D-Tagatose, a Potential Sugar Substitute, Using Immobilized LArabinose Isomerase. Biotechnology Progress, 17, 208-210. Kimura, S., Zhang, G.-X., Nishiyama, A., Nagai, Y., Nakagawa, T., Miyanaka, H., ? Abe, Y. (2005). D-allose, an all-cis aldo-hexose, suppresses development of salt-induced hypertension in Dahl rats. J Hypertens, 23, 1887-1894. Kinghora, A. D., Soejarto, D. D., & Inglett, G. E. (1986). Sweetening agents of plant origin. Critical Reviews in Plant Sciences, 4, 79-120. Knight, I. (1994). The development and applications of sucralose, a new high-intensity sweetener. Can J Physiol Pharmacol, 72, 435-439. Koyama, E., Kitazawa, K., Ohori, Y., Izawa, O., Kakegawa, K., Fujino, A., & Ui, M. (2003). In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food and Chemical Toxicology, 41, 359-374. Laffitte, A., Neiers, F., & Briand, L. (2014). Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr Opin Clin Nutr Metab Care, 17, 379-385. Laviada-Molina, H., Molina-Segui, F., Pérez-Gaxiola, G., Cuello-García, C., Arjona-Villicaña, R., Espinosa-Marrón, A., & Martinez-Portilla, R. J. (2020). Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obesity Reviews, 21, e13020. Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: Principles and practices. New York, NY: Springer-Verlag. Lawless, H. T., & Skinner, E. Z. (1979). The duration and perceived intensity of sucrose taste. Percept Psychophys, 25, 180-184. Lawrence, J. F. (2003). Cyclamates. In B. Caballero (Ed.), Encyclopedia of food sciences and nutrition (2nd ed., pp. 1712-1714). Oxford, UK: Academic Press. Le Bot, Y., & Gouy, P. A. (1995). Polyols from starch. In M. W. Kearsley & S. Z. Dziedzic (Eds.), Handbook of starch hydrolysis products and their derivatives (pp. 155-177). Boston, MA: Springer US. Lê, K.-A., Robin, F., & Roger, O. (2016). Sugar replacers: From technological challenges to consequences on health. Curr Opin Clin Nutr Metab Care, 19, 310-315. Lee, A. A., & Owyang, C. (2019). Sugars, sweet taste receptors, and brain responses. In V. B. Patel (Ed.), Molecular nutrition: Carbohydrates (pp. 265-283). Cambridge, MA: Academic Press. Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem, 132, 1121-1132. Lenhart, A., & Chey, W. D. (2017). A systematic review of the effects of polyols on gastrointestinal health and irritable bowel syndrome. Adv Nutr, 8, 587-596. Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. J Med Food, 5, 23-36. Li, L., & Seeram, N. P. (2010). Maple syrup phytochemicals include lignans, Coumarins, a Stilbene, and Other Previously Unreported Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 58, 11673-11679. Lindley, M. G., Birch, G. G., & Khan, R. (1976). Sweetness of sucrose and xylitol. Structural considerations. J Sci Food Agric, 27, 140-144. Liu, H., Qi, X., Yu, K., Lu, A., Lin, K., Zhu, J., Zhang, M., & Sun, Z. (2019). AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food & Function, 10, 151-162. Livesey, G. (2003). Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutrition Research Reviews, 16, 163-191. Low, Y. Q., Lacy, K., & Keast, R. (2014). The role of sweet taste in satiation and satiety. Nutrients, 6, 3431-3450. Ludwig, D. S. (2002). The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA, 287, 2414-2423. Lutsey, P. L., Steffen, L. M., & Stevens, J. (2008). Dietary intake and the development of the metabolic syndrome: The atherosclerosis risk in communities study. Circulation, 117, 754-761. Mace, O. J., Affleck, J., Patel, N., & Kellett, G. L. (2007). Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. The Journal of Physiology, 582, 379-392. Magnuson, B. A., Carakostas, M. C., Moore, N. H., Poulos, S. P., & Renwick, A. G. (2016). Biological fate of low-calorie sweeteners. Nutr Rev, 74, 670-689. Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., ? Williams, G. M. (2007). Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Critical Reviews in Toxicology, 37, 629-727. Mahalak, K. K., Firrman, J., Tomasula, P. M., Nuñez A., Lee, J. J., Bittinger, K., Rinaldi, W., & Liu, L. S. (2019). Impact of Steviol Glycosides and Erythritol on the Human and Cebus apella Gut Microbiome. Journal of Agricultural and Food Chemistry. Malaisse, W. J., Vanonderbergen, A., Louchami, K., Jijakli, H., & Malaisse-Lagae, F. (1998). Effects of Artificial Sweeteners on Insulin Release and Cationic Fluxes in Rat Pancreatic Islets. Cellular Signalling, 10, 727-733. Malik, V. S., & Hu, F. B. (2012). Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Curr Diab Rep, 12, 195-203. Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem, 277, 1-4. Market Data Forecast. (2019). Latin America Thaumatin Market by type and size | Industry report 2019-2024. Retrieved from http://www.marketdataforecast.com/ Martínez-Cervera, S., Salvador, A., & Sanz, T. (2014). Comparison of different polyols as total sucrose replacers in muffins: Thermal, rheological, texture and acceptability properties. Food Hydrocoll, 35, 1-8. Mattes, R. D., & Popkin, B. M. (2009). Nonnutritive sweetener consumption in humans: Effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr, 89, 1-14. Mejia, E., & Pearlman, M. (2019). Natural alternative sweeteners and diabetes management. Curr Diab Rep, 19, 142. Mellado-Mojica, E., Seeram, N. P., & Lopez, M. G. (2016). Comparative analysis of maple syrups and natural sweeteners: Carbohydrates composition and classification (differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. Journal of Food Composition and Analysis, 52, 1-8. Mennella, J. A., Bobowski, N. K., & Reed, D. R. (2016). The development of sweet taste: From biology to hedonics. Rev Endocr Metab Disord, 17, 171-178. Miele, N. A., Cabisidan, E. K., Galiñanes Plaza, A., Masi, P., Cavella, S., & Di Monaco, R. (2017). Carbohydrate sweetener reduction in beverages through the use of high potency sweeteners: Trends and new perspectives from a sensory point of view. Trends Food Sci Technol, 64, 87-93. Miller, P. E., & Perez, V. (2014). Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr, 100, 765-777. Mitchell, H. (2008). Sweeteners and sugar alternatives in food technology. Hoboken, NJ: John Wiley & Sons. Mooradian, A., Smith, M., & Tokuda, M. (2017). The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin Nutr ESPEN, 18, 1-8. Moriano, M. E., & Alamprese, C. (2017). Honey, trehalose and erythritol as sucrose-alternative sweeteners for artisanal ice cream. A pilot study. LWT, 75, 329-334. Moriconi, E., Feraco, A., Marzolla, V., Infante, M., Lombardo, M., Fabbri, A., & Caprio, M. (2020). Neuroendocrine and metabolic effects of low-calorie and non-calorie sweeteners. Front. Endocrinol, 11, 444. Moskowitz, H. R. (1970). Sweetness and intensity of artificial sweeteners. Percept Psychophys, 8, 40-42. Mu, W., Zhang, W., Feng, Y., Jiang, B., & Zhou, L. (2012). Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol, 94, 1461-1467. Mushtaq, Z., Rehman, S-, Zahoor, T., & Jamil, A. (2010). Impact of xylitol replacement on physicochemical, sensory and microbial quality of cookies. Pak J Nutr, 9(6), 605-610. Nagai, N., Ito, Y., & Taga, A. (2013). Comparison of the Enhancement of Plasma Glucose Levels in Type 2 Diabetes Otsuka Long-Evans Tokushima Fatty Rats by Oral Administration of Sucrose or Maple Syrup. Journal of Oleo Science, 62, 737-743. Nagata, Y., Kanasaki, A., Tamaru, S., & Tanaka, K. (2015). D-Psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem, 63, 3168-3176. Nagata, Y., Mizuta, N., Kanasaki, A., & Tanaka, K. (2018). Rare sugars, D-allulose, D-tagatose and D-sorbose, differently modulate lipid metabolism in rats. J Sci Food Agric, 98, 2020-2026. Nakagawa, Y., Nagasawa, M., Yamada, S., Hara, A., Mogami, H., Nikolaev V. O., Lohse M. J., Shigemura N., Ninomiya Y., & Kojima I. (2009). Sweet Taste Receptor Expressed in Pancreatic ?À-Cells Activates the Calcium and Cyclic AMP Signaling systems and stimulates insulin secretion. Plos One, 4, E5106. Nettleton, J. E., Klancic, T., Schick, A., Choo, A. C., Shearer, J., Borgland, S. L., Chleilat, F., Mayengbam, S., & Reimer, R. A. (2019). Low-Dose Stevia (Rebaudioside A) Consumption perturbs gut microbiota and the mesolimbic dopamine reward system. Nutrients, 11, 1248. Nettleton, J. A., Lutsey, P. L., Wang, Y., Lima, J. A., Michos, E. D., & Jacobs, D. R. (2009). Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care, 32, 688-694. Nettleton, J. E., Cho, N. A., Klancic, T., Nicolucci, A. C., Shearer, J., Borgland, S. L., ? Reimer, R. A. (2020). Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut, 69, 1807-1817. Nofre, C., & Tinti, J.-M. (2000). Neotame: Discovery, properties, utility. Food Chem, 69, 245-257. O'Brien-Nabors, L. (2011). Alternative sweeteners (4th ed.). Boca Raton, FL: CRC Press. Ochiai, M., Onishi, K., Yamada, T., Iida, T., & Matsuo, T. (2014). D-Psicose increases energy expenditure and decreases body fat accumulation in rats fed a high-sucrose diet. Int J Food Sci Nutr, 65, 245-250. O'Donnell, C. (2014). Formulating for a sweet perception with natural sweeteners. Retrieved from https://www.foodprocessing.com/articles/2014/formulating-for-a-sweet-perception-with-natural-sweeteners/ O'Donnell, K., & Kearsley, M. W. (Eds.). (2012). Sweeteners and sugar alternatives in food technology. Chichester, UK: Wiley-Blackwell. Oliveira, D., Antúnez, L., Giménez, A., Castura, J. C., Deliza, R., & Ares, G. (2015). Sugar reduction in probiotic chocolate-flavored milk: Impact on dynamic sensory profile and liking. Food Res Int, 75, 148-156. Oliveira, D., Reis, F., Deliza, R., Rosenthal, A., Giménez, A., & Ares, G. (2016). Difference thresholds for added sugar in chocolate-flavoured milk: Recommendations for gradual sugar reduction. Food Res Int, 89, 448-453. Olsson, K., Carlsen, S., Semmler, A., Simón, E., Mikkelsen, M. D., & Møller, B. L. (2016). Microbial production of next-generation stevia sweeteners. Microb Cell Factories, 15, 207. Oser, B. L., Carson, S., Cox, G. E., Vogin, E. E., & Sternberg, S. S. (1975). The monitoring of chemical contaminants in food. Toxicology, 4, 315-330. Ovejero-López, I., Bro, R., & Bredie, W. L. P. (2005). Univariate and multivariate modelling of flavour release in chewing gum using time-intensity: A comparison of data analytical methods. Food Qual Prefer, 16, 327-343. Overduin, J., Collet, T.-H., Medic, N., Henning, E., Keogh, J. M., Forsyth, F., ? van der Klaauw, A. A. (2016). Failure of sucrose replacement with the non-nutritive sweetener erythritol to alter GLP-1 or PYY release or test meal size in lean or obese people. Appetite, 107, 596-603. Parker, M. N., Lopetcharat, K., & Drake, M. A. (2018). Consumer acceptance of natural sweeteners in protein beverages. Journal of Dairy Science, 101, 8875-8889. Pawar, R. S., Krynitsky, A. J., & Rader, J. I. (2013). Sweeteners from plants-with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry, 405, 4397-4407. Perkins, T. D., & van den Berg, A. K. (2009). Maple syrup-Production, composition, chemistry, and sensory characteristics. In S. L. Taylor (Ed.), Advances in food and nutrition research (pp. 101-143). Cambridge, MA: Academic Press. Persano Oddo, L., Piazza, M. G., Sabatini, A. G., & Accorti, M. (1995). Characterization of unifloral honeys. Apidologie, 26, 453-465. Pfeffer, M., Ziesenitz, S. C., & Siebert, G. (1985). Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria. Zeitschrift Fur Ernahrungswissenschaft, 24, 231-235. Piana, M. L., Persano Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Declerck, C. G. (2004). Sensory analysis applied to honey: state of the art. Apidologie, 35, S26-S37. Plaza-Diaz, J., Pastor-Villaescusa, B., Rueda-Robles, A., Abadia-Molina, F., & Ruiz-Ojeda, F. J. (2020). Plausible Biological Interactions of Low- and Non-Calorie Sweeteners with the Intestinal Microbiota: An Update of Recent Studies. Nutrients. Police, S. B., Harris, J. C., Lodder, R. A., & Cassis, L. A. (2009). Effect of diets containing sucrose vs. D-tagatose in hypercholesterolemic mice. Obesity, 17, 269-275. Popkin, B. M., & Hawkes, C. (2016). Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endocrinol, 4, 174-186. Portmann, M.-O., & Kilcast, D. (1996). Psychophysical characterization of new sweeteners of commercial importance for the EC food industry. Food Chem, 56, 291-302. Prakash, I., Markosyan, A., & Bunders, C. (2014). Development of next generation stevia sweetener: Rebaudioside M. Foods, 3, 162-175. Prival, M. J. (2003). CANCER | Carcinogens in the Food Chain. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition (Second Edition). Oxford: Academic Press, pp 799-804. Purkayastha, S., Pugh, G., Jr., Lynch, B., Roberts, A., Kwok, D., & Tarka, S. M., Jr. (2014). In vitro metabolism of rebaudioside B, D, and M under anaerobic conditions: Comparison with rebaudioside A. Regul Toxicol Pharmacol, 68, 259-268. Raka, F., Farr, S., Kelly, J., Stoianov, A., & Adeli, K. (2019). Metabolic control via nutrient-sensing mechanisms: Role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol-Endocrinol Metab, 317, E559-E572. Rakha, M. K., Nabil, Z. I., & Hussein, A. A. (2008). Cardioactive and vasoactive effects of natural wild honey against cardiac malperformance induced by hyperadrenergic activity. Journal of Medicinal Food, 11, 91-98. Ranney, R. E., Oppermann, J. A., Muldoon, E., & McMahon, F. G. (1976). Comparative metabolism of aspartame in experimental animals and humans. Journal of Toxicology and Environmental Health, 2, 441-451. Reed, D. R., & Knaapila, A. (2010). Genetics of taste and smell: Poisons and pleasures. In C. Bouchard (Ed.), Progress in molecular biology and translational science (pp. 213-240). Cambridge, MA: Academic Press. Reis, F., Alcaire, F., Deliza, R., & Ares, G. (2017). The role of information on consumer sensory, hedonic and wellbeing perception of sugar-reduced products: Case study with orange/pomegranate juice. Food Qual Prefer, 62, 227-236. Ren, X., Zhou, L., Terwilliger, R., Newton, S., & De Araujo, I. E. (2009). Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci, 3:12. Renwick, A. G. (1986). The metabolism of intense sweeteners. Xenobiotica, 16, 1057-1071. Renwick, A. G., & Molinary, S. V. (2010). Sweet-taste receptors, low-energy sweeteners, glucose absorption and insulin release. Br J Nutr, 104, 1415-1420. Research and Markets. (2017). $3.5 Billion polyols (sugar alcohols) market - A global overview 2017-2022: Focus on sorbitol, xylitol, mannitol, maltitol, erythritol, isomalt and lactitol. Retrieved from http://www.globenewswire.com/news-release/2017/02/14/916876/0/en/3-5-Billion-Polyols-Sugar-Alcohols-Market-A-Global-Overview-2017-2022-Focus-on-Orbitol-Xylitol-Mannitol-Maltitol-Erythritol-Isomalt-and-Lactitol.html Reyes, M. M., Castura, J. C., & Hayes, J. E. (2017). Characterizing dynamic sensory properties of nutritive and nonnutritive sweeteners with temporal check-all-that-apply. J Sens Stud, 32, e12270. Roberts, A., Renwick, A. G., Sims, J., & Snodin, D. J. (2000). Sucralose metabolism and pharmacokinetics in man. Food and Chemical Toxicology, 38, 31-41. Roca, C., Alves, V. D., Freitas, F., & Reis, M. A. M. (2015). Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiology. Rogers, P. J., Hogenkamp, P. S., de Graaf, C., Higgs, S., Lluch, A., Ness, A. R., ? Mela, D. J. (2016). Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes, 40, 381-394. Roper, S. D., & Chaudhari, N. (2017). Taste buds: Cells, signals and synapses. Nat Rev Neurosci, 18, 485-497. Ruanpeng, D., Thongprayoon, C., Cheungpasitporn, W., & Harindhanavudhi, T. (2017). Sugar and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. QJM, 110, 513-520. Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J., & Gil, A. (2019). Effects of sweeteners on the gut microbiota: A review of experimental studies and clinical trials. Adv Nutr, 10, S31-S48. von Rymon Lipinski, G.-W. (1985). The new intense sweetener acesulfame K. Food Chem, 16, 259-269. Salminen, S., Salminen, E., Koivistoinen, P., Bridges, J., & Marks, V. (1985). Gut microflora interactions with xylitol in the mouse, rat and man. Food and Chemical Toxicology, 23, 985-990. Samanta, A., Burden, A. C., & Jones, G. R. (1985). Plasma glucose responses to glucose, sucrose, and honey in patients with diabetes mellitus: an analysis of glycaemic and peak incremental indices. Diabetic Medicine, 2, 371-373. Sanger, G. J., & Lee, K. (2008). Hormones of the gut.brain axis as targets for the treatment of upper gastrointestinal disorders. Nature Reviews Drug Discovery, 7, 241-254. Santos, P. S., Caria, C. R., Gotardo, E. M., Ribeiro, M., Pedrazzoli, J., & Gambero, A. (2018). Artificial sweetener saccharin disrupts intestinal epithelial cells? barrier function in vitro. Food Funct, 9, 3815-3822. Sato, A., Kawano, H., Notsu, T., Ohta, M., Nakakuki, M., Mizuguchi, K., ? Ogawa, Y. (2010). Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: Importance of hepatic lipogenesis. Diabetes, 59, 2495-2504. Schiffman, S. S., DA, Reilly, & Clark, T. B. (1979). Qualitative differences among sweeteners. Physiol Behav, 23, 1-9. Schiffman, S. S., Crofton, V. A., & Beeker, T. G. (1985). Sensory evaluation of soft drinks with various sweeteners. Physiol Behav, 34, 369-377. Schiffman, S. S., Booth, B. J., Losee, M. L., Pecore, S. D., & Warwick, Z. S. (1995). Bitterness of sweeteners as a function of concentration. Brain Res Bull, 36, 505-513. Schiffman, S. S., & Rother, K. I. (2013). Sucralose, A Synthetic Organochlorine Sweetener: Overview Of Biological Issues. Journal of Toxicology and Environmental Health, Part B, 16, 399-451. Schiffman, S. S., Sattely-Miller, E. A., & Bishay, I. E. (2008). Sensory properties of neotame: Comparison with other sweeteners. In K. Deepthi, D. K. Weerasinghe, & G. E. DuBois (Eds.), Sweetness and sweeteners (pp. 511-529). Washington, DC: American Chemical Society. Shankar, P., Ahuja, S., & Sriram, K. (2013). Non-nutritive sweeteners: Review and update. Nutrition, 29, 1293-1299. Shintani, T., Yamada, T., Hayashi, N., Iida, T., Nagata, Y., Ozaki, N., & Toyoda, Y. (2017). Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and insulin sensitivity partly via hepatic glucokinase translocation in Wistar rats. J Agric Food Chem, 65, 2888-2894. Smeets, P. A., de Graaf, C., Stafleu, A., van Osch, M. J., & van der Grond, J. (2005). Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr, 82, 1011-1016. Smeets, P. A., Erkner, A., & de Graaf, C. (2010). Cephalic phase responses and appetite. Nutr Rev, 68, 643-655. Spillane, W. J. (2006). Optimising sweet taste in foods. Cambridge, UK: Woodhead Publishing. Stanhope, K. L. (2016). Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci, 53, 52-67. Stellman, S. D., & Garfinkel, L. (1988). Patterns of artificial sweetener use and weight change in an American Cancer Society prospective study. Appetite, 11, 85-91. Stone, H., & Sidel, J. L. (2004). Introduction to sensory evaluation. In H. Stone & J. L. Sidel (Eds.), Sensory evaluation practices (3rd ed., pp. 1-19). San Diego, CA: Academic Press. St-Pierre, P., Pilon, G., Dumais, V., Dion, C., Dubois, M.-J., Dubé, P., ? Marette, A. (2014). Comparative analysis of maple syrup to other natural sweeteners and evaluation of their metabolic responses in healthy rats. J Funct Foods, 11, 460-471. Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., ? Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nat Lond, 514, 181-186. Suzuki, Y. A., Murata, Y., Inui, H., Sugiura, M., & Nakano, Y. (2005). Triterpene glycosides of Siraitia grosvenorii inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J Agric Food Chem, 53, 2941-2946. ?wia?der, K., Waszkiewicz-Robak, B., ?widerski, F., & Kostyra, E. (2009). Sensory properties of some synthetic high-intensity sweeteners in water solutions. J Sci Food Agric, 89, 2030-2038. Swithers, S. E. (2013). Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends in Endocrinology & Metabolism, 24, 431-441. Sylvetsky, A. C., & Rother, K. I. (2016). Trends in the consumption of low-calorie sweeteners. Physiol Behav, 164, 446-450. Sylvetsky, A. C., & Rother, K. I. (2018). Nonnutritive sweeteners in weight management and chronic disease: A review. Obesity, 26, 635-640. Takayama, S., Renwick, A. G., Johansson, S. L., et al (2000) Long-Term Toxicity and Carcinogenicity Study of Cyclamate in Nonhuman Primates. Toxicological Sciences 53:33-39. Tamura, M., Hoshi, C., & Hori, S. (2013). Xylitol affects the intestinal microbiota and metabolism of Daidzein in Adult Male Mice. International Journal of Molecular Sciences, 14, 23993-24007. Tan, V. W. K., Wee, M. S. M., Tomic, O., & Forde, C. G. (2019). Temporal sweetness and side tastes profiles of 16 sweeteners using temporal check-all-that-apply (TCATA). Food Res Int Ott Ont, 121, 39-47. Tan, V. W. K., Wee, M. S. M., Tomic, O., & Forde, C. G. (2020). Rate-All-That-Apply (RATA) comparison of taste profiles for different sweeteners in black tea, chocolate milk, and natural yogurt. J Food Sci, 85, 486-492. Tey, S. L., Salleh, N. B., Henry, C. J., & Forde, C. G. (2017). Effects of non-nutritive (artificial vs natural) sweeteners on 24-h glucose profiles. European Journal of Clinical Nutrition, 71, 1129-1132. Tey, S. L., Salleh, N. B., Henry, J., & Forde, C. G. (2017). Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. International Journal of Obesity, 41, 450-457. Teff, K. L., & Engelman, K. (1996). Oral sensory stimulation improves glucose tolerance in humans: Effects on insulin, C-peptide, and glucagon. Am J Physiol-Regul Integr Comp Physiol, 270, R1371-R1379. Ter Horst, K. W., & Serlie, M. J. (2017). Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients, 9, 981. Ter Horst, K. W., Schene, M. R., Holman, R., Romijn, J. A., & Serlie, M. J. (2016). Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: A systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr, 104, 1562-1576. Thanarajah, S. E., Backes, H., DiFeliceantonio, A. G., Albus, K., Cremer, A. L., Hanssen, R., ? Tittgemeyer, M. (2019). Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab, 29, 695-706.e4. Thériault, M., Caillet, S., Kermasha, S., & Lacroix, M. (2006). Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chemistry, 98, 490-501. Thomson, P., Santibanez, R., Aguirre, C., Galgani, J. E., & Garrido, D. (2019). Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. British Journal of Nutrition, 122, 856-862. Toews, I., Lohner, S., Gaudry, D. K. D. E., Sommer, H., & Meerpohl, J. J. (2019). Association between intake of non-sugar sweeteners and health outcomes: Systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ, 364. Toews, I., Lohner, S., Gaudry, D. K. d., Sommer, H., & Meerpohl, J. J. (2019). Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. Bmj (Clinical Research Ed.), 364. Uebanso, T., Kano, S., Yoshimoto, A., Naito, C., Shimohata, T., Mawatari, K., & Takahashi, A. (2017). Effects of consuming xylitol on gut microbiota and lipid metabolism in mice. Nutrients, 9(7), 756. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2015). Xylitol: A review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr, 55, 1514-1528. Vamanu, E., Pelinescu, D., Gatea, F., & Sarbu, I. (2019). Altered in vitro metabolomic response of the human microbiota to sweeteners. Genes, 10, 535. Varzakas, T., Labropoulos, A., & Anestis, S. (2012). Sweeteners: Nutritional aspects, applications, and production technology. Boca Raton, FL: CRC Press. Ventura, E. E., Davis, J. N., & Goran, M. I. (2011). Sugar content of popular sweetened beverages based on objective laboratory analysis: Focus on fructose content. Obesity, 19, 868-874. Viskaal-van Dongen, M., de Graaf, C., Siebelink, E., & Kok, F. J. (2009). Hidden fat facilitates passive overconsumption. J Nutr, 139, 394-399. Wagoner, T. B., McCain, H. R., Foegeding, E. A., & Drake, M. A. (2018). Food texture and sweetener type modify sweetness perception in whey protein-based model foods. J Sens Stud, 33, e12333. Wan, C., Yuan, T., Li, L., Kandhi, V., Cech, N. B., Xie, M., & Seeram, N. P. (2012). Maplexins, new ?¿-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorganic & Medicinal Chemistry Letters, 22, 597-600. Wang, Q.-P., Browman, D., Herzog, H., & Neely, G. G. (2018). Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. Plos One. Wee, M., Tan, V., & Forde, C. (2018). A comparison of psychophysical dose-response behaviour across 16 sweeteners. Nutrients, 10, 1632. Weingarten, H. P., & Martin, G. M. (1989). Mechanisms of conditioned meal initiation. Physiol Behav, 45, 735-740. Wexler, H. M. (2007). Bacteroides: The good, the bad, and the nitty-gritty. Clin Microbiol Rev, 20, 593-621. Whitehouse, C. R., Boullata, J., & McCauley, L. A. (2008). The potential toxicity of artificial sweeteners. AAOHN J, 56, 251-259. Willems, J. L., & Low, N. H. (2012). Major Carbohydrate, Polyol, and Oligosaccharide Profiles of Agave Syrup. Application of this Data to Authenticity Analysis. Journal of Agricultural and Food Chemistry, 60, 8745-8754. Withers, C., Barnagaud, C., Mehring, P., Ferris, S., & Thomson, D. M. H. (2016). Adapting and enhancing sequential profiling to understand the effects of successive ingestion, using the sensory characteristics of high intensity sweeteners as a case study. Food Qual Prefer, 47, 139-147. Xi, D., Bhattacharjee, J., Salazar-Gonzalez, R-M., Park, S., Jang, A., Warren, M., ? Kohli, R. (2020). Rebaudioside affords hepatoprotection ameliorating sugar sweetened beverage- induced nonalcoholic steatohepatitis. Sci Rep, 10, 6689. Yamada, T., Hayashi, N., Iida, T., Takamine, S., Okuma, K., & Matsuo, T. (2014). Dietary D-Sorbose decreases serum insulin levels in growing sprague-dawley rats. Journal of Nutritional Science and Vitaminology, 60, 297-299. Yang, Q. (2010). Gain weight by ?going diet?? Artificial sweeteners and the neurobiology of sugar cravings. Yale J Biol Med, 83, 101-108. Young, R. L. (2011). Sensing via intestinal sweet taste pathways. Front Neurosci, 5, 23. Zhang, G.-H., Chen, M.-L., Liu, S.-S., Zhan, Y.-H., Quan, Y., Qin, Y.-M., & Deng, S.-P. (2011). Effects of mother's dietary exposure to acesulfame-K in pregnancy or lactation on the adult offspring's sweet preference. Chem Senses, 36, 763-770. Zhang, H., Yang, H., Zhang, M., Wang, Y., Wang, J., Yau, L., ? Hu, P. (2012). Identification of flavonol and triterpene glycosides in Luo-Han-Guo extract using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Food Compos Anal, 25, 142-148. Zhang, W., Yu, S., Zhang, T., Jiang, B., & Mu, W. (2016). Recent advances in d-allulose: Physiological functionalities, applications, and biological production. Trends Food Sci Technol, 54, 127-137. Zhang, W., Zhang, T., Jiang, B., & Mu, W. (2017). Enzymatic approaches to rare sugar production. Biotechnology Advances, 35, 267-274. Zorn, S., Alcaire, F., Vidal, L., Giménez, A., & Ares, G. (2014). Application of multiple-sip temporal dominance of sensations to the evaluation of sweeteners. Food Qual Prefer, 36, 135-143. 26677512 NBK333439 University of Washington, Seattle Seattle (WA) GeneReviews® 1993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

3.  Optimization of the Obtaining of Cellulose Nanocrystals from Agave tequilana Weber Var. Azul Bagasse by Acid Hydrolysis.LinkIT
Gallardo-Sánchez MA, Diaz-Vidal T, Navarro-Hermosillo AB, Figueroa-Ochoa EB, Ramirez Casillas R, Anzaldo Hernández J, Rosales-Rivera LC, Soltero Martínez JFA, García Enríquez S, Macías-Balleza ER
Nanomaterials (Basel, Switzerland), 2021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0

4.  Evolutionary ecology of Agave: distribution patterns, phylogeny, and coevolution (an homage to Howard S. Gentry).LinkIT
Eguiarte LE, Jiménez Barrón OA, Aguirre-Planter E, Scheinvar E, Gámez N, Gasca-Pineda J, Castellanos-Morales G, Moreno-Letelier A, Souza V
American journal of botany Am J Bot Evolutionary ecology of Agave: distribution patterns, phylogeny, and coevolution (an homage to Howard S. Gentry). 216-235 10.1002/ajb2.1609 With more than 200 species, the genus Agave is one of the most interesting and complex groups of plants in the world, considering for instance its great diversity and adaptations. The adaptations include the production of a single, massive inflorescence (the largest among plants) where after growing for many years, sometimes more than 30, the rosette dies shortly afterward, and the remarkable coevolution with their main pollinators, nectarivorous bats, in particular of the genus Leptonycteris. The physiological adaptations of Agave species include a photosynthetic metabolism that allows efficient use of water and a large degree of succulence, helping to store water and resources for their massive flowering event. Ecologically, the agaves are keystone species on which numerous animal species depend for their subsistence due to the large amounts of pollen and nectar they produce, that support many pollinators, including bats, perching birds, hummingbirds, moths, and bees. Moreover, in many regions of Mexico and in the southwestern United States, agaves are dominant species. We describe the contributions of H. S. Gentry to the understanding of agaves and review recent advances on the study of the ecology and evolution of the genus. We analyze the present and inferred past distribution patterns of different species in the genus, describing differences in their climatic niche and adaptations to dry conditions. We interpret these patterns using molecular clock data and phylogenetic analyses and information of their coevolving pollinators and from phylogeographic, morphological, and ecological studies and discuss the prospects for their future conservation and management. © 2021 Botanical Society of America. Eguiarte Luis E LE https://orcid.org/0000-0002-5906-9737 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico. Jiménez Barrón Ofelia A OA Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico. Aguirre-Planter Erika E Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico. Scheinvar Enrique E Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico. Dirección General de Informática y Telecomunicaciones, Secretaría de Medio Ambiente y Recursos Naturales, Ciudad de México, Mexico. Gámez Niza N Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, Mexico. Gasca-Pineda Jaime J Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico. Facultad de Estudios Superiores, Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico. Castellanos-Morales Gabriela G Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa, Villahermosa, Tabasco, Mexico. Moreno-Letelier Alejandra A Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico. Souza Valeria V Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico. eng CONACyT IN202712 DGAPA, UNAM IN224309 DGAPA, UNAM KE004 CONABIO PE001 CONABIO Journal Article 2021 02 11 United States Am J Bot 0370467 0002-9122 IM Agavoidea Asparagaceae bat pollination conservation desert genetic resources mescal phylogeography population genetics 2020 05 26 2020 10 29 2021 2 13 6 0 2021 2 13 6 0 2021 2 12 6 15 ppublish 33576061 10.1002/ajb2.1609 LITERATURE CITED, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>5.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Assessment of the bacterial diversity of agave sap concentrate, resistance to in vitro gastrointestinal conditions and short-chain fatty acids production.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Figueroa LM, Ramírez-Jiménez AK, Senés-Guerrero C, Santacruz A, Pacheco A, Gutiérrez-Uribe JA<br><font color=gray><i>Food research international (Ottawa, Ont.), 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>6.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Relative genetic diversity of the rare and endangered <i>Agave shawii</i> ssp. <i>shawii</i> and associated soil microbes within a southern California ecological preserve.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Vu JP, Vasquez MF, Feng Z, Lombardo K, Haagensen S, Bozinovic G<br><font color=gray><i>Ecology and evolution, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>7.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Chemical composition of <i>Luffa aegyptiaca</i> Mill., <i>Agave durangensis</i> Gentry and <i>Pennisetum</i> sp.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Moreno-Anguiano O, Carrillo-Parra A, Rutiaga-Quiñones JG, Wehenkel C, Pompa-García M, Márquez-Montesino F, Pintor-Ibarra LF<br><font color=gray><i>PeerJ, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>8.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Localization and Composition of Fructans in Stem and Rhizome of <i>Agave tequilana</i> Weber var. azul.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Pérez-López AV, Simpson J, Clench MR, Gomez-Vargas AD, Ordaz-Ortiz JJ<br><font color=gray><i>Frontiers in plant science, 2020</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br>9.  <a href=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0 class=title>Sustainable Biocomposites from Recycled Bale Wrap Plastic and Agave Fiber: Processing and Property Evaluation.</a><a href=http://ubio.org/tools/linkit.php?map%5B%5D=all&link_type=2&url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0><img src=linkit.png border=0 title='LinkIT' alt='LinkIT'></a> <br><span class=j>Chowdhury IH, Abdelwahab MA, Misra M, Mohanty AK<br><font color=gray><i>ACS omega, 2021</i></font><br><font color=#008000>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=0<br></font></span><br><br><br><table cellspacing=0 cellpadding=0 align=center><tr valign=bottom><td align=center><img src=p.png border=0></td><td align=center><img src=o_red.png border=0></td><td align=center><img src=rtal.png border=0></td></tr><td align=center></td><td align=center>1</td><td align=center></td></tr></table></table></tr></table></td><script src="http://www.google-analytics.com/urchin.js" type="text/javascript"> </script> <script type="text/javascript"> _uacct = "UA-634822-1"; urchinTracker(); </script> </BODY> </HTML>